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1. INTRODUCTION
1.0 OBJECTIVES OF REPORT

The main objectives of this report are:
(1) provide the theoretical and modeling background used in a
two-dimensional model of heat and soil-water flow,
coupled by soil-water freezing and thawing (FROST2X series).
(2) present the major modeling assumptions used in the com-
puter program, and the various components of the program
in order to aid the user in the use of the model.
(3) present the necessary parameters and data requirements
used in the computer model.
(4) discuss the computer model output product, and methods
to interpret the results.

(5)

present the data input sequence to the computer model.

1.1 REPORT ORGANIZATION
This report is organized into five chapters and one appendix.
CHAPTER 1. Provides an introduction to the report.

CHAPTER 2. Develops the Nodal Domain Integration (NDI) model

of two-dimensional soil-water flow in saturated
and unsaturated soils.
CHAPTER 3. Develops the NDI model for heat flow in three
dimensions. The thi?d dimension {8 included
in this NDI development (an NDI analog for
radial coordinates is presented in Appendix A)

in order to provide for the extension of the

phase change model to other coordinate systems.
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CHAPTER 4. Develops the two-dimensional soil-water phase

change model used to couple the heat and soil-

water flow during soil-water freezing and thawing. =

CHAPTER 5. Presents a summary of the two-dimensional freezing/ i
thawing model and the modeling input-output i_

characteristics. Provides documentation to the é{

computer program input requirements, :g

APPENDIX Expands upon the heat flow modeling approach §b
developed in chapter 3 to radial coordinates. ﬁi

The theory developed in the appendix applies to :g

both heat and soil-water flow in the selection of h%

mass-lumping factors for use in NDI domain models. f%

by

N

1.2 COMPUTER PROGRAM SOURCE CODE Gﬁ
This report presents documentation for the FROST2B version of the #j‘

FROST2X series of two-dimensional phase change models. Also provided in F
this report is the documentation for the program PROTOP which provides a g'
user-friendly data input capability for subsequent use by program FROST2B. ls
Both computer programs are written in FORTRAN IV and can be used on 55

most mini-computer class computérs. E%
Computer code for the FROST2B and PROTOP can be obtained from the U.S. o~

Army Corps of Engineers, Cold Regions and Research Laboratory (CRREL). :;‘
0
1.3 REPORT AUTHORIZATION -q
This report was prepared under the direction of Dr. Richard L. Berg ési

and Mr. Francis Sayles of CRREL, Hanover, New Hampshire. .
=
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UNIFIED NUMERICAL MODEL OF TWO-DIMENSIONAL
SOIL-WATER FLOW

2.0 INTRODUCTION

Numeric approximation of two-dimensional non~linear partial differential
equations such as occur in the theory of unsaturated ground water flow is
generally limited to numeric solution by the finite difference or finite
element methods., Finite difference approximations, such as described by
Spalding (1972) for a specified control volume, can be determined for
rectangular and also for irregular two-dimensional domains, Finite element
methods, such as variational principle applications and weighted residuals,
can also be applied to irregular two-dimensional domains. Both methods
determine numerical algorithms which are often compared to each other for
numerical "efficiency" or other descriptions of superiority (Hayhoe, 1978).

Recently, Hromadka and Guymon (1982a,b) have developed a new numerical
approach called the nodal domain integration method which has been applied
to one and two-dimensional linear and non-linear problems for irregular
rectangular domains. From this numerical approach, the finite difference
and finite element (Galerkin) methods are "unified" into a single numerical
statement,

In this chapter the nodal domain integration method is applied to the
two-dimensional triangular finite element. As special cases, the finite
element and finite difference numerical analogs are determined by the
appropriate specification of a single parameter in the resulting nodal domain
integration numerical statement. Thus, all three numerical approaches are
unified by one numerical statement similar to the usual finite element matrix
system,

The purpose of this effort is two-fold. The first objective 18 to pre-
sent a basic description of the nodal domain integration procedure as applied

to the class of partial differential equations generally encountered in the
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theory of unsaturated groundwater flow. Detailed mathematical derivations Vs
LICC

&

of this numerical approach are contained in the literature (Hromadka and :}x
'y

N
Guymon, 1980a,b,c) and will not be repeated here. The theoretical (X

5

foundations of this numerical method are based on the well-known subdomain o,
1. l'.‘;

technique of the finite element weighted residuals approach. iﬁﬁ
.‘_‘ )

0.‘ by

The second objective is to present a unified numerical statement which ﬁfh

represents the finite element Galerkin statement, finite difference inte~ ;;:

24 Ql:

grated control volume statement, and the nodal domain integration statement ﬁa

§ '

(for a linear shape function distribution of the state variable) by the Al

specification of a single constant parameter in the resulting triangle element ol
-

L%

matrix system. ; 0
|’~

A secondary objective is to briefly discuss the application of the g
nodal domain integration triangle element statement to reducing computer :3;
R

memory requirements by the technique of approximating a higher order or more ﬁﬁ,

3

complex family of triangle (or global) shape functions by a linear shape -'5

function approximation. A detailed mathematical description of this linear :ﬂf
'
\\

shape function appraximation technique is given for the one-dimensional Q;?

P8
r)

S

case in a previous work (Hromadka and Guymon, 1982a and will not be

s

repeated here.

vy
N
The main purpose of this chapter is to develop a generalized unified :&;
'd‘_:f
triangle element matrix system which can be used in computer programming "j-
efforts. Consequently, a single computer program can be developed which kki'
essentially represents the finite difference, finite element (Galerkin), and ::':
nodal domain incegration numerical approaches. This work does not recommend “}f
one numerical approach, (although for the problems tested, the nodal domain if:
e N
ST
integration scheme produced better levels of accuracy, i.e. Hromadka and e
AL

>
Guymon, 1980a-c, and generalizes the numerical expressions so that the ':
o
extension to the three-dimensional case can be made by appropriate inte- 3E:
A
gration of the resulting expressions in the third dimension (see Chapter 3). \jq:
e
4 .I’.
N
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2.1 GOVEBRNING EQUATIONS .“;.;;
;CZK.'Q

Two~dimensional unsaturated Darcian soil-water flow in a nondeformable ‘::f;jf'

"8

soil matrix § may be described by the partial differential equation ;i_, L
e

NG

3, . 3¢, e,

(Kx Bx) (Kyay t’ (x,y)e (1) ':’:::

e

wvhere (Kx, Ky) are anisotropic hydraulic conductivity values in the (x,y) % l
(1]

00

directions, respectively; ¢ is the total hydraulic energy head (¢ = V + y); .:7
o

¥ is the soil-water pore pressure head; and 6 is the volumetric water e Y
content. In (1), water content 1s assumed to be functionally related tr o
Dt

soil-water pore pressure according to the usual soil drying curve, with y i::
b

)

hysterisis effects neglected. Thus, e
8=f06(W), p<oO 2 ::.:::;

N

where 60 is the soil porosity, assumed constant. R
")"-

Guymon and Luthin (1974) define a volumetric water contemt to pore pressure \::{
e

gradient by \;3
* 30 , ¥ <O N

6 = ’ X

W (3) N

o ,v2>0 '\::-.

A

Therefore, (1) may be rewritten as T
) 2 * 3 o

K ] + 2 [K ] =98 s (x,y)e (4) =)

H [ % y t ! ’ '-.:-

2.
<

-'(_\.

LA )

b

2
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For ease of presentation, the soil matrix § is assumed homogeneous and

isotropic with hydraulic conductivity Kh. Therefore, (4) 1is simplified

for discussion purpose as

= 21+ 21 -0 Pxpea 5)

2,2 NUMERICAL SOLUTION
The class of partial differential equations including (5) can be

described by an operator relation

A(9) = 0; (x,y)ef (6)

where A(¢) is the mathematical relation operating on the state variable, ¢.
The finite element method can be used to approximate (6) by the method of

weighted residuals (Pinder ahd Gray, 1977).

I J A@wdxdy = 0 (1 = 1,2,...,% N

where ¢ is approximated by a linear combination of suitable functioms, §,

defined by
¢ = 321 asé; (8)

The subdomain version of weighted residuals uses the weighting functions

1,(x,y)e ¥
vy o= i 9)
0,(x,Y) & f?j

2,2,

where 1 is discretized into two-dimensional nodal domains Qj (with

s
.

respect to finite element e)

Q= un‘; (10)

L Xe
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Thus, the subdomain method is simply an appropriate integration of the

governing equations over each finite element. :f?;

The nodal domain integration method (Hromadka and Guymon, 1980a,b) ;?
is an application of the finite element subdomain approach over appropriately :§
defined nodal domains. These nodal domains are partitions of the finite é%
element such that the resulting nodal domain corresponds to the control ;;
volume configuration established by Spalding (1972). For a two-dimensional A%
triangle finite element, the nodal domain partitions are established by the E§
triangle medians as shown in Fig.2.1 allocating one-third of the triangle's ‘:
area to each respective nodal domain, Detailed mathematical descriptions of g§~
the integration process for linear and nonlinear partial differential 5:

.

operators are given in Hromadka and Guymon (1980a,b,c). These derivations

[y s

result in an expression :i
o
(k+1)Ac (k+1)At el
2% 3 >
N 3 o
(K (x,y) 52} [dydt + (&, Gx,y) 5y } [ dxdt -
\-
ke €€ (y) re(x) kot QF (x) re (y) N
3 j 3 i ¥
R
>
11) o
(k+1)At ),
* 3 A
= ) dxdydt o
t N
e ‘o
w2
. e
where integrations are made on the assumed shape function spatial and :u
|~.-
temporal distributions of the state variable and nonlinear parameters. ;“
This integration procedure substantially differs from the integrated t
h ':'.
) finite difference control volume approach (Spalding, 1972) due to the finite RN
difference approach assuming the state variable to be constant interior to :;
b/
each control volume (nodal domain) and due to the finite difference approach "
assuming flux terms as constant (spatially) along each side of the control 3;
7 y;
d
) -

=

‘s ‘y
S

0
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FIG. 2.. LINEAR SHAPE FUNCTION TRIANGULAR FINITE ELEMENT
PARTITIONED INTO NODAL DOMAIN CONTRIBUTIONS

BY MEDIANS
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FI6.2.2. VECTOR DESCRIPTION OF TRIANGLE FINITE ELEMENT
GEOMETRY




volume rather than integrating the spatial variation of the flux terms as St

defined by the assumed shape function distribution of the state variable. :.F\:-%
Another major difference of the nodal domain integration method from the 'i;;:«:
usual finite element and finite difference approaches is the use of the ,3?%
resulting linear shape function nodal domain integration numerical statement ﬁé?
to approximate higher order or more complex families of shape functions with- ’ig?
out an increase of computer memory requirements associated to the use of such ;:4é
more complex families of shape functions (Hromadka and Guymon, 1981 ). ‘;gb
In order to evaluate the spatially integrated flux terms of (11) for ;-!
each nodal domain partition of a triangular finite element, the triangle fﬁ}
geometry is defined by a system of vectors as shown in Fig.2.2. For the X ’::
assumed linear shape function variation of the state variable, ¢, in the iia
finite element triangle the spatially integrated flux term contribution to the ~,$:
triangle partition associated to nodal domain Slf is geometrically determined EEI'
by Fig.2.3. From Fig.2.3 flux must contribute to Qg through the boundaries of i‘;@
fig and can be calculated by the flux vector through state variable ¢-values ;gg
¢; (at node 1) and ¢' as shown in the figure. Thus, E:
om0, + 8,4 (12) 2
L 31 k™2 ::E

The integration of the spatial boundary of Qg normal to the considered flux -
E?f'
vector is L/2 as shown in Fig.2.3. Thus, the efflux is geometrically Q@

determined to be (constant for linear shape function approximation) e

d1 d2 .

K [¢j(T) + 0. - ¢,) . "é;.
(13) Y

h Ao

LN LY. D I I U T R TR R S TR D
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dg=(Fj *Fji /L

s
i ¥ "

D
FIG.2.3. GEOMETRIC SOLUTION OF FLUX DISTRIBUTION (FOR NODAL =

DOMAIN Q?) FOR ASSUMED LINEAR SHAPE FUNCTION
DISTRIBUTION OF STATE VARIABLE

¢

CA X

N ¥

I/ 3(i+d;+9y) ‘

FIG. 2.4. LINEARLY DISTRIBUTED STATE VARIABLE VALUES IN NODAL
DOMAIN PARTITION 0}
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and the integrated efflux contribution for Q; is

% 2
- = (¢ d.L + ¢, dL -L%] (14)
Y w32 {

vhere, from Fig. 2.3,

2 _ a2 = . 2 .2

L rjk . rJk xjk + yJk (15)
-l = 3

il =T " T T oSk Y Tad ik (16)

-y -l
dL = Ty Tk = (xij’jk + yijyjk) (17)
and where xjk =X - xj. In vector notation, the integrated efflux contribution

for nodal domain partition ﬂf of the triangle finite element (assumed linear

shape function) is

(e) ¢
2 ayd) - + )¢ + | ¢
Al ik T Yk %k T T g a5k T Y135k 3 (18)

where in (18) A(e) is the area of the finite element triangle, and Kée) the
uniform value of hydraulic conductivity assumed for a sufficiently small finite
element triangle (Hromadka and Guymon, 1980a).

This net efflux contribution to the triangle partition of Qi is identical
to an integrated finite difference control volume approach as outlined by
Spalding. Additionally, the net efflux term of (18) 1is identical to the

Galerkin-determined finite element triangle component of the net efflux for

nodal point i1 (Pinder and Gray, 1977).

1




The above described geometric considerations can be applied for each
nodal domain partition of the triangle resulting in an element conduction
matrix identical to a Galerkin-determined element conduction matrix (linear

shape function)

2 2
@ | %t Iid T (g YY) (gy¥ae Vg
k(® . 5‘ﬁ 2,02 _ . , | a9
~ 4A%® S VMR X39%k T Y13V 1k
(symmetric) xi§ + yi§

where (e) refers to properties of the finite element triangle element (e).
The notation and representation of the element conduction matrix by (19)
can be compared to the finite element analog given in Myers (1971),
The nodal domain integratjion method evaluates the integration of the state

variable in the triangle partition for Qf as

RO
[ f ¢ dxdy = Tos [22¢1 + 74)j + 7¢k] (20)
Qi.
where (20) represents the integrated variation of a linearly distributed
state variable in Qi, (Fig. 2.4.)
The integrated finite difference control volume contribution of the

state variable integrated or ﬂi (as described by Spalding) would be

[ ] ¢axdy =% [4,) 1)
oy

The Galerkin-approach finite element so-called capacitance contribution
is given by (Myers, 1971)

RO,
I [2¢, + ¢j +¢.) (22)

12




f - — — — U
o
.
¢

In matrix notation, the nodal domain integration numerical analog is *4}
represented by the element capacitance matrix for 6'(&) a uniform value of 8" e,

within a sufficiently small finite element triangle (e)

oy
n 1 1 ':::
(e) . * N
pl® . A8 () 1 n 1 (23) s
(n) 3(m+2) 11 W
where (n = %% ) corresponds to a linear shape function distribution of the f;ﬁ
O
ati
state variable in the finite element triangle, and other values of n correspond ﬁ??
.0
'!
to other shape function approximations as estimated by a linear shape function ﬂ?ﬂ
approximation (for example, the alternation theorem; Hromadka and Guymon, 1981 ). :Q$§
A
From (21) and (22), the element matrix of (23) also represents the ﬁ\ﬁ
'..'.,
Galerkin-version of the finite element method as well as the finite difference o
analog for n = (2,®), respectively. Thus, the various numerical approaches :
)
are "unified”" by the nodal domain integration procedure where the finite element E ﬁ
and finite difference approaches are given by a specified constant parameter, Kl
n. o
The resulting nodal domain integration numerical approximation of (§) E}k
is given by the cumulative triangle element contributions NN,
% % )
@ |, PR3 S G 26) e
~ h| (n) .J ks,
‘e
& oy o

where dots represent time derivatives of nodal point values of the state variable,

¢, and n = (2, %%3 ») correspond to a linear shape function numerical approxi-

mation by the Galerkin finite element, nodal domain integration, and finite ::;i
difference methods, respectively. -23?
From the above, the popular domain numerical methods of finite element ?::'
and finite difference are unified into an overall numerical approach which {is 2:}
:?:
S
13 i
2T
B 2 Sy o ot e S U LA o 2 1 o




i a subset of the nodal domain integration approach. Consequently, a computer "

program based on a finite element approach may be modified into the unified
AR
approach of the nodal domain integration method. o
Nodal domain integration numerical statements for irregular rectangular ‘ﬁ
domains (and one-dimensional domains) are contained in other recent papers o
Al
(Hromadka and Guymon, 1982a,b). Extension to three-dimensional problems is .
A
- '
provided in Chapter 3. Additionally radial, cylindrical and spherical coor- ‘n:
06
dinate systems are considered in Appendix A. ;'
{
2.3 CONCLUSIONS 'ﬁz
‘.‘:’
The nodal domain integration numerical approach has been used to determine :“
a numerical analog which incorporates the finite element (Galerkin) and g
o
Ay
o
integrated finite difference methods as special cases. The resulting g%
P
nunerical statements involve the same computational requirements as does the L
finite element procedure., Therefore, the nodal domain integration procedure ,:‘?
9
o
1, \
unifies the finite element and finite difference approaches by a single €§
by
numerical statement as a function of a single constant parameter. Thus, b
computer programs may be prepared based on the nodal domain integration _3'
~%
procedure which inherently contains both the finite element (Galerkin) and A
" '
o~
finite difference techniques. >N
=
K M
o,
Lt ()
o>,
N
’\
. ’\
8&.
LXY
END
::\-.
o
hANS|
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3. UNIFIED MODEL OF THREE-DIMENSIONAL HEAT TRANSFER
3.0 INTRODUCTION

A two-dimensional integrated finite difference method is presented by
Patankar (1980). This triangle element model can be extended to a three-dimensional
tetrahedron element model, and both the two- and three-dimensional finite

element models can be compared in the solution of linear heat conduction problems.

First, the integrated finite difference method is applied to a three-dimensional
heat conduction process where the global domain is discretized into tetrahedra-
shaped finite elements. By integrating the governing partial differential
equations on subsets of the finite elements (nodal domains), an extension
of the integrated finite difference (Spalding, 1972) analog is developed.
By using the subdomain integration version of the method of weighted residuals,
another numerical analog is developed which is similar to the integrated
finite difference approach. Comparison of the integrated finite difference
and subdomain integration numerical analogs to one determined by the Galerkin
finite element method of the weighted residuals process indicates that all
three analogs determine similar finite element matrix systems which when com-
bined into a global matrix system satisfy both Dirichlet and Neumann
boundary conditions.

Hromadka and Guymon(198la,b) have examined the finite difference, sub-
domain integration, and Galerkin finite element methods for solution of
partial differential equations in one- and two-dimensional problems. They
combine these numerical approaches into a single numerical statement which
can represent any of the considered numerical methods by the specification
of a single constant parameter, N, in the element matrix systems. Examinations
of model approximation error in comparison to analytical solutions for linear
heat and mass conduction problems indicate that the element matrix mass

lumping n must be variable between elements and with respect to time in

16
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order to reduce approximation error. That is, to minimize numerical approxi-
mation error, the method of numerical solution generally must vary through the
entire range of domain numerical techniques including the Galerkin finite
element, subdomain integration, integrated finite difference, (control volume,
or mass lumped finite element) and numerous versions of finite element mass-
weighting schemes. Extensive computer simulations of one- and two-dimensional
problems indicate that sometimes a single numerical analog will minimize the
approximation error for only a particular region of the solution domain or
only for a certain duration of the simulation, and that continued use of the
particular numerical analog will produce approximation errors greater than
errors generated by switching the method of numerical solution to another
technique.

The reduction of the Galerkin finite element mass matrix into a diagonal

mass lumped matrix is well known (Zienkiewicz,1977). However, it is important

to note that the so-called mass lumped diagonal matrix is analogous to the

integrated finite difference capacitance matrix as developed by Spalding (1972).

An infinity of mass weightings of element nodal contributions can be determined

directly by introducing an improved linear trial function in the finite element,

where the element-boundary trial function continuity requirements are relaxed,
and then using the usual subdomain integration version of the weighted residual

process. The fact that certain mass lumping patterns may improve computational

results (Ramadhyani and Patankar, 1980) indicates that a unified model may be deve-
loped which utilizes a variable mass matrix and yet can still represent the well

known Galerkin, subdomain integration, and integrated finite difference analogs.

In this chapter, the general form of the three-dimensional nodal domain
integration finite element matrix system will be developed. The resulting

element matrix system will be shown to represent an extension of the integrated

17
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finite difference method, subdomain integration version of the finite element
method of weighted residuals, and the Galerkin finite element method by the
specification of a single constant parameter. The finite element used is a
three-dimensional tetrahedron with a linear trial function used to approxi-
mate the governing transport equation's state variable within each element.
Although the main consideration of this work 1is towards diffusion processes,
an advection component is included in the model development for generalization
purposes.

The main objectives in this chapter are as follows:

(1) develop a three-dimensional integrated finite difference analog for
a diffusion (or advection-diffusion process) using a tetrahedron
finite element discretization. This objective is an extension of
the two-dimensional triangle element analog recently presented by
Baliga and Patankar (1980), and includes the development of a three-
dimensional model and the representation of the model in finite
element matrix form. An integrated finite difference approach is
seen to result in a node-centered control volume analog or, as it
is usually referred to in finite element models, the ''diagonal
mass-lumping" finite element approach.

(2) develop a subdomain integration model for the tetrahedron finite
element using a linear trial function in each finite element. The
subdomain integration method is also referred to as a control
volume approach and has been shown to result in numerical models
which may give better approximation results than the often used
Galerkin finite element method, The subdomain integration analog
will also be developed into a finite element matrix form in a
manner such that the integrated finite difference and subdomain
integration models can be readily compared to the well known

Galerkin finite element analog.
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(3)
(4)

(5)

(6)

'-I_’(‘__-F'V' Vo e ."'

ry—

develop a variable "mass-lumping” finite element analog.

show that Dirichlet and Neuman boundary conditions are satisfied
in the global matrix systems for each of the above determined
analogs. This is significant due to the misconception that the

finite difference and subdomain integration analogs need special

formulae to approximate a Neumann boundary condition (e.g., Bear, 1979).

develop a unified three-dimensional domain numerical analog which
represents all of the above numerical -models by the specification
of a single parameter in the resulting unified matrix system.

since the various domain approaches determined above can be unified
into one numerical statement, use the unified model to examine
model approximation error by allowing the unified model to vary
between the infinity of available domain models. This objective

is achieved by determining the optimum capacitance matrix nodal mass
weightings in the finite element for two transient linear heat
conduction problems. Both two- and three-dimensional nocal mass
weighting factors are determined for comparison purposes. Methods
to determine an optimum element nodal mass weighting factor, n,

is the subject of current research; however, a method for esti-
mating a mass-lumping factor,n, for radial coordinates is given

in Appendix A, and in Hromadka and Guymon(1981).

3,1 GOVERNING EQUATIONS AND SET DEFINITIONS

A three-dimensional advection-diffusion process in an inhomogeneous aniso-
tropic nondeformable medium without sources or sinks may be macroscopically

described by the nonlinear partial differential equation

[- aT = 3 aT - aT
— K—-U’I‘]+— Ry — = VI | +— | K —-WI|=C— (1)
ax

3y - 0z 2 32 - at
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where (x,y,z) are spatial coordinates; t is time; (Kx =K , Ky = Ky , K =K

XX
are principal axis values of conductivity (e.g. Fickian diffusivity or thermal
conductivity); C is a capacitance coefficient; T is the state variable (e.g.
temperature); and (U,V,W) are (x,y,z)-axis advection components (e.g. fluid
velocity). It is assumed that (1) described the governing flow process in

the nondeformable global domain of spatial definition Q with global boundary T.

All parameters defined in (1) are assumed variable with respect to both space

and time

;= g(x,y,z,t) for T € {Kxoxy»Kz)U’v’wsc} (2)

In vector notation, (1) may be written as

N oT
q*dlfl= | C—dV 3)
9t
r Q
where Eﬁ is the outward unit normal vector to surface T, 1{5?‘1 = dA; and

N aT . 9T . aT .

q = (Kx — - UT) i+ (K —-VT) j + (Kz — - WT) k 4)
9x y dy 3z

The numerical approximation of (4) requires a discretization of the problem
domain, Q2. The subdomain (control volume) and finite element discretization
processes differ. However by overlapping the two main discretization patterns,
the intersection of subdomains with the finite elements result in a third
discretization composed of smaller '"nodal domains'" which are common to both

of the main discretizations. For an n-nodal point distribution in { with

associated subdomains Rj and boundaries B

3
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(5)

(6)
Rj,’]Rk z BJ..qu (7)
(ypy) € Ry (xiy,) § R, 39k (8)
Combining (3) with (5) and (6),
- — - ——
q * dl = q * dTl (9)
T UB
]
3T aT
C — dV = J C— av
I e 2 (10)
UR,
& 3
A finite element discretization of  is defined by
Q = un® (11)
where each finite element Q° has a boundary ¢ where
0%z a® < o ur® (12)

A set of nodal domains Q? can be defined for each finite element as the

intersection with associated subdomains

e _ e
= RO (13)
Qj RJﬂ

This set of nodal domains is defined for each finite element 2 by the index
of element nodal numbers(see Fig., 3.1 for the one-dimensional case; the

two-dimensional case is illustrated for triangles in Fig. 3.2)
€ - UQje, jes® (14)
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FIG. 3.I. ONE DIMENSIONAL DISCRETIZATION OF GLOBAL DOMAIN (2 SHOWING

NODAL POINTS (1), FINITE ELEMENTS Q°, SUBDOMAINS R;, NODAL
DOMAINS (%, AND NODES e
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FIG. 3.2a. FINITE ELEMENT 0°® WITH THREE VERTEX ,::0.':
LOCATED NODAL POINTS
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where

s® = {3'9;09" ¢ {o}} (15)

From (15) s® is simply the set of nodes associated to element %, A finite
element matrix system equivalent to the governing domain equation (1) is

generated for local finite element Q¢ by

T
{f?;-cﬁ*-fc—dv}-{o},jese (16)
e e 3t

3 Qj

Likewise, a subdomain integration statement for (1) is generated for local

subdomain R, by

3
.. T
{Jq'dI‘-JC— dV}s{O} (17)
at
B, Ry

Expanding the transport integral of (16) gives

. aT oT T - e
Jq-ﬁ-JEX—zx+x—Q+x—i-urz-vrn-wrzjdA.jes (18)
re re ax y dy Yy Z o 2 X y z

where (lx,ly,lz) are the direction cosines of 3?, and dA is the differential

surface area. Equation (18) can be rewritten as

‘ 3T 3T aT
f q ar - [:K — L +K — ¢ +K — ¢ :] dA
x x x y x z
re réyre ax dy Jy
b 3

(19)

- I'\ [Unx+vny+wmz] dA + J g -dlf . jes®
e e e e e
renr re-r’Nr
b ] jm
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*y
(N
2
!E"r
‘:';9
Ly, ¢
where ¢ = boundary of finite element 0%, The first integral in the expansion 5}
et
%, ¢
of (19) satisfies Neumanr boundary conditions on ™ or preserves flux continuity o
(due to conduction processes) between finite elements, 0%. In the global assem- h'“
By
blage of UQe, the first integral in the expansion of (19) also satisfies Neumann iy
l'|
boundary conditions on the discretized approximation of global boundary [ by re. ﬂﬁ-
From (19), the element matrix system of (16) is given by *\i
P
( vé‘i
) |
a - > B!
Ja'cﬂ'- L(UT1+VTJ+WTk]-ET‘-Jc—dv = {0}, § €s°® (20) .3:
reorre rihre Qf ot J ~
i3 3 b b ey
: .
o)
where it is assumed that boundary conditions of Neumann or Dirichlet are specified ;Q::
"y
on global boundary I'. ‘
Ny
NEN
3.2 NUMERICAL SOLUTIONS NN
LN
a0
In the derivation of the finite element integration statement of (20) for &, a7
no specification of the character of the state variable is assumed. In the fol- sfff
.-_:-f
lowing, the state variable T is assumed to be adequately approximated by a linear ;::
2t
< 3
trial function T° in each finite element 0F. Additionally, each 0% is assumed to >N
be a tetrahedron finite element with four vertex-located nodal points. RS
~ Lt
e
Therefore ~
N
¢\"
e e
T=T =3IL T (21) :
j j .';-."
where the Lj are the usual tetrahedra volume local coordinates in Le; and Tje ;;i.
are nodal point values of the trial function estimate 7% in 7%. Due to the linear NG
RS
definition of T° in Qe, all spatial gradients of 7% are constant. Consequently, :ﬁ}
\'.\:
several well known domain numerical solutions of (1) in i embodied irn the finite N
b/
element method of weighted residuals result in similar numerical approximations if\:
'.‘.\:
tn 2° except for slight variations in the element mass matrix. }ﬂ}
oA
S
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In the following, a Galerkin finite element (linear trial function),
subdomain integration (linear trial function), and integrated finite difference
analogs will be determined and combined into a single expression. For the
finite difference and subdomain analogs, the integratiomns of (1) on a nodal

e
domain cover 0F of each finite element §! will be used to determine a finite

b

element matrix system for Q®. TFor all three numerical methods, the following

description variable is defined:

3 - o1 3 3T 3T
¢5—Lxx—-ur:]+—x——-vr_l , — - WT -Cc—, (x,y,2) € R
ax 3x 3y 9z ot

(22)

Although the Galerkin method of weighted residuals used to solve (1) in each Q¢
is well known, its derivation of a finite element matrix system is presented in

order to develop some of the notation and simplifications used in the subsequent

Galerkin Method of Weighted Residuals

In local element Qe,

f
J @Ljdv =0 (23)

Qe

generates a Galerkin finite element matrix system for approximation of (1) on R

Equation (23) is linearized by assuming all parameters quasi-constant during a

small timestep At (e.g., Bear, 1979)

e

T =C +27, g > 5 ; (x,y,2) €& (24)
For the linear trial function Te definition of the state variable T in ;e, the
x-direction terms of (23) are given by
26
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determinations of the subdomain integration and integrated finite difference analogs.
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_— l"‘l'
:."n
n‘:‘l
327® . a1® :%q
J (x_® - U® —) L R
PR (25) -
o . i
e e [N 4
3T aT" dL oT
-Ixxe_u-f(xxe—_—l’ue_—l')dv o
ax X ax  ax ax n,
re o e
Eﬁ:::f
where the first integral of (25) satisfies Neumann type boundary conditions on Y
& i
global boundary I or conduction flux continuity between 0%, ﬁ*f:
,
For a linear trial function T° in 0% and Neumann boundary conditions on T, fz‘
alre % ol Tt AL aT® e
J (xxe - —) Ljdv - - [ (xxe — e —1)yav 26) {,
ax? ax ox 3x ax 3 \,§l
e e [ Nt
Q Q .
N
e e
3T~ 3L oT )
.-Ke——ifdv-ue-—fx.dv (27) 3
X j MG
ax 9x ax ‘o
Qe Qe ,‘;\\
-ﬁ "
4 3 ‘
where
."_ )
AN
1% by T oY
- P (28) 2
ox 6V NN
e e . e - ::a‘
where 'I'j are nodal values of T at nodal points j; V- = volume T
o5
of the tetrahedron element; and bj are vertex coordinate co-factors. ;:ﬁ
.":‘ !
Substituting (28) into (27) gives
a?1® aT® b, T,° oL T, T.° ve oS
J (x - Ut —) LV = - K e 11 _Jye_ e Li (g9 )
e ax? Ix X 6ve x 6ve 4 b
Q -4
.';\‘
From Figs. 3.3 and 3.4 the shape function gradient in (29) can be determined 5:*
N
geometrically as (see chapter 2, equation 13 for two-dimensions) t:::
b/
3L, 3 (v 1 v 1 R
s RS I § R I (30) S
ox ax (V& Ve ax (hj,x) bg\
_‘-..\
27 ™
WY VR At g \"l LI S T N Y -..'l- ) .“. ...‘.. y .. N '- '. -\ -- .i‘.-i."l\"n."l -."‘-
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FIG. 3.3. PROJECTION IN THE x DIRECTION OF NODAL POINT i
ONTO THE TRIANGLE [ 2, 3, 4]

®
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\f‘(‘f‘f"ff !

MIDPOINT OF LINE 1, 4

TRIANGLE FACE
[1,3,4] CENTROID

(0® CENTER OF GRAVITY

FIG. 3.4. NODAL DOMAIN Qf* GEOMETRIC DEFINITION

28

A \ = \_.\..‘-",‘- f:\ ~ .':-_.'- - ’\'.‘- *: o (\ -l‘? NN P )




Thus,
aL 1
— v .- ( ‘;'hx-") (A, x) (31)

where {Al,x) is the projection of the triangle face [2,3,4] onto the (y,z)
coordinate plane.

Simplifying (31) and substituting into (29) gives

2.8 e e e e

AT . T e BT Ay TSV

. X ? ax 6V 3 6V 4
9)

The (y,z) direction terms are determined analogous to the above. The time

derivative term of (23) is modeled by

% o T
e e i
J C — Ldvs= ¢ J LL — dav (33)
ot 1 3 at
o o)

Solution of (33) determines the Galerkin finite element capacitance

matrix for local element Qe

R 1 1 1] (1° ]
e e e
oo cve o2 1o Jrz
P%(2) 1° = . (34)

20 11 2 1| |19

e

P 1 1 2] (1°
aT, ©

where T; z ——i—w(j = (1,2,3,4)}

at

Subdomain Integration

e
A cover of finite element 0 1is given by the union of nodal domains ﬂj
where § € S®. For a tetrahedron finite element, local nodal domain 4? in .o is

assumed defined by Fig. 3.4,
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The subdomain integration method solves (1) in ot by ﬁ)
e’
0
o
Imv-o,jese (35)
. "0‘4
Q W,
j \"l
N

For the x-term transport components of (1), o

9 e a1° 3 e e e e .
f{-[xx—-— - — UT]}dV-HJ,jCS (36) ]
ot Ix % ax '

8
]
. or® ;
where Hej z J c® dv :.,
ne ot RN
] A
Expanding (36) gives
~
e e ;" )
. T , T aT® . =
J K. — dA_ + J K, — dA_ - J v® — av = M¢ (n -3
ek ax ré ~enre Ix e 3x 3 ;?
[ -1 Q i
J J b
o
The first integral in (37) satisfies Neumann boundary conditions on [ and con- :::
0‘. g
", %y
duction flux continuity between 0¢ similar to the Galerkin formulation. ;.*'
Thus, (36) reduces to o
.:\-:
o
e e G
e aT ( e 3T e Ny
K, —— dA_ - U- — 4V = M (38) i
e’ ~e e ax !ze ax : -
3 3 L
e
For a linear trial function T in Qe, (38) simplifies to :;-';
PN
£l ol b ol <
e e ‘e W
K, — | dA, - U — J dv = M (39)

RTINS



o,

The surface I‘;-—I‘;.’\I’e projection onto the (y,z) plane is given by the integral

vith respect to dAx in (39). From Fig. 3.4,

1
dAx = i(AhX) (40)

e ‘re e
rj-rjﬁr

where(A; ) is the projection of triangle face onto the (y,z) plane.
?

Additionally, from Fig. 3.4

v
I dV = — (41)
0

aT® ( . 3T
K& — dA - Uu® — J dv =
x ax ) x 3%
rerenre e
j 4 ] (42)
. T.% (A, ) b T, ¢ ve
K € 1e1 1,x s 1i
X eV 3 6ve 4

Comparison of (32) to (42) indicates that the Galerkin finite element and sub-
domain integration method of weighted residuals determine identical transport
e

R e . -
system matrices for the assumed linear trial function T in . .

For the time derivative component of (36),

‘e e i e 3 [ e e
M,-J' — dV = ¢ — T dv , j €S (43)
] £ ot at flze
3 3
which in matrix form gives
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Intcgrated Finite Difference

Spalding (1972) developed an integrated finite difference numerical solution
for partial differential equations such as (1) defined on rectangular-shaped
control volumes (subdomains). In this version of the subdomain integration method,

it is assumed that

[TedV-Te[dV (45)
R 3 R
bl 3
that is, the nodal value of 1% at node j is assumed equal to the spatial distri-
bution of T in subdomain Rj,

For a linear trial function TI® in each Qe, the transport terms of (1) evaluated
on each Bj determines a conduction matrix identical to the Galerkin and subdomain
integration approaches previously derived. From (45), the capacitance matrix from
an integrated finite difference approach differs from both the Galerkin and sub-

domain integration approaches and is given in matrix form by the so-called lumped

mass diagonal matrix

1 0 0 o‘l (7$)

c® ve O 1 0 O TS
e "€ -
P (=) T 1ee (46)
N 4 0 0 1 0 T
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Nodal Domain Integration o
‘0‘:'0
Hromadka and Guymon (1981) examined the one-dimensional form of (1) and ":!',j

developed a modification of the subdomain integration method of weighted residuals

j which improved numerical modeling accuracy by the approach of approximating a .-;.
, . 4
higher order trial function T® estimate of the state variable T by using a linear “:::
I!;‘t'
trial function T°. Using this approach, a significant increase in modeling o
2
accuracy was achieved while preserving matrix symmetry and the reduced matrix Prdt
%
sizes associated to a linear trial function. By integrating the governing :’
equations on suitably defined nodal domains, a variable symmetric element capaci- -
tance matrix was defined which represented the Galerkin finite element, subdomain ::-:_
ol
integration and finite difference methods as special cases. :‘w'
The nodal domain integration numerical statement for solution of (1) on o® ;
-
A
using a linear trial function is found to be similar to the one-dimensional case -_:f.
LA o
o)
and i{s given in element matrix form for o® by .'::
»
N
€%+ 2% () T° = {0} (47 A
~ ~ ~ ':-:;’.'
o
{~0
where K® = sum of element 0F conduction and convection matrices given Kt
(for the x-term) by (32) and (42); :::::
o
!'n 1 1 1] -
-'..
o™
. c® v 1 a1 1 1 )
P” (n) = , (48) ,; X
4(n+3) 1 1 n 1 L
Ll 1 1 n_ ::
A
and Te, ¢ = vectors of element $i° nodal values and time-derivative of nodal values. :_“.-
- = ~
¢ :
In (48), the Galerkin finite element, subdomain integration, and integrated N
n\ -.
finite difference numerical statements for a linear trial function in 0% is given et
by n = (2,-;—?—,0"), respectively. F-'::?‘
33 T
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3.3

Consequently, a single computer code can be prepared which readily
represents each of the more popular domain numerical methods by the specifi-
cation of single parameter. Additionally it should be noted that (47) accom-
modates both Dirichlet and Neumann boundary conditions on [' similar to the
Galerkin finite element approach

For the one-dimensional nodal domain integration approach the corresponding
N parameter was determined to be a function of time and variable between finite

elements (Hromadka and Guymon, 1981b),

n = n (2,¢) ( 49)

As an aid in selecting the mass-lumping factor, a procedure for calculating
the factor as a function of timestep and element size is given in Appendix A
for the case of radial coordinates,
APPLICATION
As an application of the above methods, two linear heat conduction
problems (Figs. 3.5 and 3.6) are modeled to examine approximation error for
various values of mass lumping. For both problems, a two- and three-dimensional
ncdal domain integration model are used to approximate the temperature fields.
Using mean relative error as the measurement, the finite element mass matrix
was varied by trial and error until a value of n was determined such that the
timestep advancement (Crank-Nicolson approach) resulted in a minimum error. In
all simulations, the finite element mass-lumping factor (n) is assumed constant
throughout the solution domain for the time advancement timestep. Consequently,
mean relative error is minimized as a function of one mass-lumping variable.
The plots of n during the simulation are given in Fig 3.7 where both two- and
three-dimensional (triangle and tetrahedron elements) models are used to solve

the test problems.
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From Fig. 3.7, both two- and three-dimensional solutions indicate that for hm
O
the initial portion of the numerical solutions, an integrated finite difference :::
analog minimizes the error measurement. As the solution progresses with time, R
o,
)
however, the numerical analog approaches a subdomain integration numerical ?.
L), ‘-
model. This variation in numerical approach was found similar to other test f%
problem results for one- and two-dimensional problems. Apparently, the integrated r
I
finite difference approach reduces mean relative error when the state variable ﬁ&
-...'_'
gradient is severe within a finite element, and a subdomain integration analog La
o
best serves a milder variation of the state variable in a finite element. ::t
\J, :
“
Use of different timesteps and element sizes altered the shape of the 3*
n
n curves in Fig. 3.7, but the scan of numerical analogs from integrated finite Wt
difference to subdomain integration is still evident. S;
i
As suggested by (49), the n factor was found to vary both between finite :ﬁ:
)
' h
elements and with respect to time for one—-dimensional problems. The extension A
Rt
of such an approach to multidimensional problems may follow based on the selec- s
N
tion of a rule to determine n for each finite element. One approach is to f{
b:'
approximate a higher order. or more complex trial function within a finite element KNS
SRSy
by a linear trial function, and then use the improved linear trial function to S
determine an appropriate n mass-lumping factor. As n varies, a global matrix }:}
.7
\‘.‘v
regeneration is required which increases computational effort. However for -
highly nonlinear problems, global matrix regeneration may already be frequently e
~,
. =
necessary which helps offset the n factor complications. Appendix A presents A X
\I
N-
an approach for selecting the mass-lumping factor, and the approach tested {5
for the casc of a radial coordinate system. :Eﬂ;
N
(N
2y
(]
=
o
A
I\'-."
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The results of the two test problems presented in this chapter are
typical of the overall results obtained by numerous other computer simu-
lations of problems where analytical solutions exist. Generally speaking,
holding the mass-weighting factor n uniform and constant in each finite
element results in a numerical method which provides varying degrees of
approximation error. That is for some problems, a constant mass-weighting
numerical model (such as Galerkin, finite difference, subdomain integration,
or some other selected mass-weighting model) may provide a '"best" overall
numerical approximation. For other problems, the same selected mass-weight-
ing model may provide a "best" numerical approximation for only a certain
interval of the simulation or for only a certain region of the total problem
domain. This generality applies to one-, two- and three-dimensional problems
when using the well known rectangle, triangle aund, as preseanted in this
chapter, tetrahedron finite elements.

Although the test problems considered here only indicate the necessary
variation in uniform finite element mass-weightings to minimize a measure of
error (while holding the mass-weighting factor constant between finite
elements), similar variations in mass-weightings were found evident when
holding finite element mass-weighting's constant with respect to time and
yet variable between finite elements. That is, if the finite element mass-
weighting factor were allowed to be variable between finite elements but held
constant during the entire simulation, different distributions of n through-
out the problem domain resulted in various levels of approximation accuracy.

Methods for determining mass-weighting factors for each finite element

are presented for one-dimensional problems in Hromadka and Guymon (1981).
Two techniques of improving a linear trial function in each finite element
are considered. Each improved trial function approach results in a

variable mass-weighting factor for each finite element.
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It is noted from the extensive computer simulations prepared during 'ébﬁ

this research, that there is a strong correlation between the minimization [RA
of overall approximation error and the use of a large n factor distribution “E
(e.g. a finite difference analog) in regions of large or fast variations é%?
of the problems governing state variable. Additionally, use of a sub- #54
domain integration n distribution in regions of mild or slow variations ?¢g
of the state variable also tends to reduce overall approximation error. 2"
Surprisingly, the various optimized n curves, such as shown in Fig. 3.7, ~lh
did not include the often used Galerkin finite element numerical model. 3;“
i

3.4 CONCLUSIONS _'ﬁ :
A nodal domain integration numerical model is derived for approximating QY

a three-dimensional anisotropic heat conduction process in an inhomogeneous EE:
continuum. The nonlinear partial differential equation is linearized in each igf
tetrahedron-shaped finite element by assuming all parameters quasi-constant _*;:
for small durations of time., A linear trial function is assumed to adequately Eﬁf
describe the governing state variable in each finite element. Eﬁ
The resulting nodal domain integration model is found to represent the N5
Galerkin finite element, subdomain integration, and finite difference methods EEE
as special cases. Additionally, both Dirichlet and Neumann boundary conditions gs;
are accommodated similar to a Galerkin finite element numerical model. :;5
Application of the nodal domain integration model to linear heat conduction izé?
problems indicate that the finite element mass matrix must vary with time in i}iﬁ
order to provide an optimum numerical solution for the entire simulation. ,i;~
The mass matrix is defined as a function of a single variable, n, and allows $E§
wy

a good representation of the required mass-lumping necessary to minimize i‘:
numerical solution error. Use of the numerical model allows a unified computer \;_
S

code to be developed which offers the capability to represent a Galerkin, sub- :EE
NN
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domain integration, integrated finite difference, and an infinity of different
mass-lumped matrix models, as well as provide the capability to vary between
these numerical analogs according to some specified model-selection rule.

From the complete NDI development of Chapter 3 for three-dimensional flow
problems and the two-dimensional development of Chapter 2, it is seen that
both heat and soil-water NDI models can be prepared which represent the Galerkin
finite element, integrated finite difference and subdomain integration
methods by the specification of a single mass-lumping factor. This NDI ap-
proach is used in program FROST2B to model both the heat and soil-water flow
Consequently, the program user can specify a particular domain analog

regimes.,

by the use of the appropriate mass-lumping factor.
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ISOTHERMAL PHASE CHANGE MODEL
INTRODUCTION

A model of phase change in freezing and thawing soils is developed for
cold regions engineering problems which require two-dimensional analysis
of the thermal regime of soils, Such problems include complex boundary
conditions such as atmosphere-ground surface thermal interaction and
snowpack-insulation, Other concerns include complex soil conditions such
as the presence of a peaty muskeg or tundra-like soil which may provide
thermal insulation for underlying ice-rich mineral soil., Although several
models have been developed to predict temperatures in freezing and thawing
soils, oftentimes the key question is simply whether or not the soil is
frozen since soil structural properties are significantly influenced by
the soil-water state of phase,

The history of modeling the coupled heat and moisture transfer process
with phase change in freezing (and thawing) soils seems to begin with the
work of Stefan in 1890. By assuming that water freezes in the soil at a
constant temperature (OOC) the equations of conduction heat transfer can
be solved exactly. The resulting solution is known as the moving boundary
problem, and is inadequate for soils where moisture is retained in the
thawed condition (for freezing temperatures), or when moisture transfer
occurs,

Neumann expanded on Stefan's analysis by including a partial differen-
tial equation system to describe the thermal profile on both sides of the
moving boundary. Although inadequate for real world systems, the Neumann
problem can be used to verify numerical models of soil freezing wherein
moisture transfer and residual unfrozen moisture contents are neglected.
Such applications of Neumann's anaylsis were used in Berggren (1943) and
Aldrich(1956). Further exact solutions are available for soil freezing

problems. These mathematical developments (Goodman, 1964; Sikarskie and
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Boley, 1965) are valid, however, only for special case studies.

For problems of soil freezing where an unfrozen moisture content exists
below the freezing temperatures, a moisture transport process is generally
also occuring. Williams(1972) concluded that this moisture transfer effect
is usually of the magnitude that ignoring its contribution can lead to
unacceptable errors. The presence of moisture below freezing temperatures
negates the assumptions used in the moving boundary problems. Thus, an
entirely new approach to fine-grained soil freezing analysis was required.

Lukianov and Golovko (1957) introduced the "apparent specific heat capacity"

P

approach whereby the latent heat effects of freezing water are lumped into

2,7,

the transient heat capacity term of the heat transport equation,

.
I
rd
o~
'd
v
o
bh

With the advent of computer simulation capability, the past two decades
have witnessed considerable effort in freezing soil analysis developments.

These recent numerical modeling efforts can be divided into two groups

depending on whether soil moisture transfer effects are included.

Nakano and Brown (1971) modeled the heat transfer process while
Harlan (1973) approached the coupled heat and moisture transport problem
with a finite difference numerical algorithm, which is based on the assump-
tion of an analogy between moisture transport processe~ in unsaturated soil
and a freezing soil. Guymon and Luthin (1974) included vertical soil-water
flow in a finite element model of a one-dimensional vertical soil column.
Sheppard (1978) and Taylor and Luthin (1978) also presented mathematical
models for the coupled heat and moisture transfer process. These models use
the assumption that water content of the soil is a function of temperature
during phase change. Jame (1978) expanded on Harlan's model to compare
numerically simulated results to experimental data. It is noted that these
later models require spatial and temporal magnitudes on the order of 1.18 in.

(3 cm) and 0.5 hours, respectively. A method to extend the above models to
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economically model large-scale, long duration two-dimensional problems has
not been advanced. These models and numerical models of frost heave are
reviewed by Guymon, et al. (1980) and Hopke (1980) among others. It is
noted that while one-dimensional models of soil freezing or thawing are
adequate for a large number of applications,at least two-dimensional models
are required for many problems such as buried pipelines, roadway berm prob-
lems, and embankments on permafrost.

Geothermal models (i.e., soil-water flow effects are neglected) often
provide a thermal analysis capability which is sufficient for many problems.
Examples of geothermal models which are reported in the literature include
the isothermal phase change model of Bafus and Guymon (1976), the two- and
three-dimensional isothermal phase change model of Guymon and Hromadka (1977),
and more recently the sophisticated two-dimensional, moving-mesh, finite
element model of Albert (1984).

An advantage of the continuously deforming grid system is that the
freezing front is tracked sharply, and requires negligible interpretation
of nodal value estimates of ice content to locate the interface between
frozen and unfrozen soil. An earlier one-dimensional version of a finite
element continuously deforming coordinate system model is presented in
detail in O'Niell and Lynch (1981). Currently, both of these models are
restricted to homogeneous soil systems. Additionally, the mathematical
modeling approach results in a type of convection term due to the precise
handling of the mesh movement. The mesh moving algorithm requires addi-
tional computational effort in order to provide a freezing front coordinate-
movement approximation coupled with an interior domain nodal point trans-

formation and finite element regeneration capability., Such a modeling

approach may be inadequate, however, for soil-water freezing/thawing
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problems which involve soil-water flow effects and a nonhomogeneous soil S?ﬂ
e
system. A
The main objective of this chapter is to present the soil-water phase ;"w
“aN
change modeling approach used to couple the heat and soil-water flows o
A
described in chapters 2 and 3, respectively. The ultimate goal of this b
effort is to develop a computer model capable of determining the thermal ;h
a
and moisture states of a two-dimensional soil system subjected to the :{q;
'
freezing and thawing processes experienced in cold climate regions. A .
major factor influencing the choice of the modeling approach is that not :$\
K,
only should the computer model be accurate, it should also be economical to :*N
N
use, without the need to obtain parameter data which is costly to evaluate.
Additionally, it is desirable that the computer code be prepared such that A
"-J\
¢,
it can be accomodated on small computers such as the PDP 11/34 or Data :;5
<
General "Eclipse'" computer systems. g'_
Ao
N
e
4.1 HEAT AND SOIL-WATER FLOW poRs
RS
The theory of heat transport in freezing soils and their thermal pro-
e
perties have been the subject of several recent publications such as :?}
s
o
Lunardini (1981) and Farouki (1981). For two-dimensional heat flow in {::
ey
isotropic soils, the governing partial differential equation is .i;
B
.'N
[ T 3 3T aT p, 38, T T Ny
—|*— (g |G-l = — +CU —+CV — \
3y Ay 2 3t P, at Ix 3x L
>
. . o P
where x and y = cartesian coordinates, t=time, T=soil-water-air-ice mixture B
oA
temperature,ei=volume of ice per unit total volume of soil, Kp=thermal ;i;
[ A .
\'.‘..
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conductivity of soil-water-air-ice mixture, C =volumetric heat capacity of

Xy

res we e
w5

™
i

soil-water-air-ice mixture, L=volumetric latent heat of fusion of bulk water,

k)

o, = o, * density of ice and water, respectively, C =volumetric heat capa-

h !
(\'

ﬁﬁ

city of water, and U and vV =the x and y velocity flux components. In (1),

-,

-

the latent heat parameter, L, may be assumed to be constant for temperatures

less than -20°C (Anderson, et al, 1973). The thermal parameters, Ky and Cp,

are assumed to be functions of the volumetric content of each material constituent
over the nodal point control surface and control volume (chapter 3). To

reduce computational effort, the convection terms in (1) are approximated

as an average value estimated from the previous timestep solution, and then
included in the load vector term of the numerical analog. Figure 4.1 illus-

trates the heat flow conservation model used for each nodal point. For

4 &

example, DeVries (1966) uses a volumetric fraction proportion

%
r'"l ..’

Cm =7 Cj Gj (2)

Ly

N

l,. -" l.' Q" n‘.

where Cj=volumetric heat capacity of the jth constituent andé% =volumetric
h

\1"‘1'
¥

fraction of the jt constituent. The heat flow equation is nonlinear due

LY

to the K and C, parameters being functions of ice and water content in a

% sy ®_°
L0 AT
Y
‘I

freezing and thawing soil. Other considerations include relationships

N v
7
AR

’
4

between temperature and soil-water undergoing phase change such as discussed

by Anderson, et al (1973). A mathematical model of soil-water flow in un-

s l‘.r'.l'
(.'l' -"':’ ,1.4 4

T

frozen, isotropic soils given in nondeformable saturated or unsaturated

YAy

porous media is (e.g., Bear, 1979)

3 3¢ 3

— Ky — | +— | KRg— | =—+s

Ix Ix 3y 3y at

where ¢ =total hydraulic head, Ky=Darcy hydraulic conductivity,




ALGORITHM ALGORITHM PROCEDURE
STEP NUMBER
(1) Estimate area-averaged thermal ©» NODE
parameters of heat capacity over
the control volume R., and thermal
conductivity on the dontrol
surface Bi'
.
Y,
e
(2) Estimate nodal values of tempera- kb
ture at time t+At given the tem- TRIANGLE ELEMENTS SURROUNDING S
peratures at time t. (See Chapter NOOE -'_"5
3)- ;-:)
- = BISECTOR T
++ CENTROID v
e
e
ol
Koy
(3) If nodal temperature values at o~
time t or t+At indicate phase " a
change of soil-water, modify PRI
nodal temperature values and N
thermal parameters according to }';\."_,'.
the isothermal phase change model, A
o
TRIANGLE ELEMENTS SUBDIVIDED w3
INTO NODAL DOMAINS s
1)
P
-« HEAT FLUX 2
(4) Return to Step (1) to model next T e
timestep advancement. -‘._',.
i
I"O"
e
Roe
“.N
CONTROL VOLUME R; AND CONTROL Ty
FIG., 4.1, HEAT FLOW MODEL SURFACE  B; ASSOCIATED TO ~Tves
NODE (1) S
.-:'t--
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.‘4‘..-‘ ...' _‘.'_‘. .

6, ~volumetric water content, and Samoisture sink. Figure 4.2 illustrates the
soil-water flow conservation model used for each nodal point. In unsaturated
soils Ky may be assumed to be a function of soil-water pore pressures (soil-
water tension). The moisture sink term for a freezing soil accounts for

the phase change of liquid water to ice by

p, 36
S-L—i.—_i. (4)
pw at

Application of (3) in a freezing/thawing problem requires the incorporation
of special considerations in order to describe soil-water flow in a frozen
soil, For example, the presence of ice in soil significantly affects the
rate of soil-water flow (Nakano, 1982). This impact may be interpreted as

a reduction in the Darcian hydraulic conductivity (assuming a Darcian soil-
water flow model). In studies by Jame (1978) and Taylor and Luthin (1978),
the soil-water flow model hydraulic conductivity had to be significantly
reduced in a freezing zone in order to adequately reproduce measured thermal
and soil-water data in freezing horizontal columns. From these studies,

a general hydraulic conductivity relationship was proposed

-E8,

K = K, 10 (5)
where K=soil-water hydraulic conductivity, Ky=unfrozen soil-water hydraulic
conductivity, 81=volumetric ice content, and E=a calibration factor evaluated
from one-dimensional vertical column soil freezing laboratory models. 1In
the computer model, the hydraulic conductivity in (5) is assumed to be zero
for completely frozen soils. Soil-water freezing characteristic curves
indicate that soil-water exists even at very cold temperatures. This 'resi-

dual'" water content is used as a lower bound for water content in the model.
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ALGORITHM ALGORITHM PROCEDURE :",
\ STEP NUMBER vl
o 2
[} U
(1) Estimate area-avera gd soil-water ® = NooE o
flow parameters of over the S
control volume R., hydraulic con- X
ductivity on the 'control surface B1.. 2
N x
\ "'
s =3
N R
Ny i~
‘ (2) Estimate nodal values of soil-water )
energy head at time t+ At given ~
r the values at time t. (See TRIANGLE ELEMENTS SURROUNDING e
5 Chapter 2.) NODE N
. - = BISECTOR N
. += CENTROID
fh,
"
Bt
(3) If phase change is predicted from
the HEAT FLOW MODEL, modify nodal <
values of water content, pore pres- .
sure and energy head according to \
isothermal phase change model, )
Adjust soil-water flow parameters o
to accommodate soil-water-ice <
mixture, .
g TRIANGLE ELEMENTS SUBDIVIDED ;
y INTO NODAL DOMAINS
4 :
v + * SOIL- WATER FLUX .
i
v (4) Return to Step (1) to model next ‘
. timestep advancement. o
> Y
g 2
v .
g .
G ~
.‘- N
E: ;Z:
i CONTROL VOLUME R; AND CONTROL =
., FIG. 4.2. SOIL-WATER FLOW MODEL SURFACE B, ASSOCIATED TO K
A NooE () .
- ;
- -
Ty .
b g
¢ T
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Soil-water content is assumed a function of pore pressure head by e

d
M)
o
't
6 :
6 =» —2— © o
Alp|"+1 o
m
<
where 6°=porosity,lp=soi1-water pore pressure head, and A and n =regression o
fit coefficients, ~
-
o
4.2 PHASE CHANGE g
N J
The two-dimensional phase change model has been under continual develop- [
K
ment since 1979, The primary effort has been under the direction of Dr. ﬁ:
..,\
", N
Richard L. Berg of the U.S. Army Research and Engineering Laboratory in N
\‘.‘n
W
Hanover, New Hampshire. The main objective of this effort is to develop
N
. - . . - 3 L 3 .I.'
a computer model which provides analysis capability for geotechnical engineers e
-‘,:-
involved in cold regions engineering project. The program is designed to be ::;
o
o
comprehensive, and yet easy to use with a minimum of field data requirements.
i.,' h
Development of this model has been reported upon as follows (Guymon, et al. Cj‘
\
W
1984): Guymon, et al. (1980) and Berg, et al. (1980) represented the con- L‘;\
L)
SaY,
cepts of a modeling approach and presented early verification and sensitivity ‘
v,
results. Subsequently, Guymon, et al. (198la) presented additional veri- =
fication results, and Hromadka, et al. (1982) presented a detailed evaluation ;:'.-::
of model sensitivity to the cholce of numerical analog. Guymon, et al. (1981b) :
o
evaluate parameter sensitivity and develop a probabilistic model which is S
:1.': \
cascaded with the deterministic one-dimensional model. Finally, Guymon, et al. S
(1984) present applications of the two-dimensional model applied to pipeline .
e
\a
studies and roadway embankments, ;:},
-’\I
S
A summary of the key assumptions used in the two-dimensional model are N,
ha
as follows: ‘
T
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1. Soil-water flow occurs in unfrozen zones by liquid water film ]

driven by hydraulic gradients such as described by Darcy's law. isg
2. Soil-water flow in frozen zones is negligible. 2';
3. Heat flow is mathematically described by (1). e*&%
.

4, Soil-water flow is mathematically described by (3). 'ﬁsh
S. Soil-water phase change may be approximated as an isothermal T;:x
process. _E:?

6. Unfrozen zones are nondeformable, and in freezing zones or frozen E;:
zones, deformation is due to ice segregation or lens thawing only. K

7. Soil water pore pressures in freezing zones are governed by a ;%2
residual water content determined from soil freezing tests. §33.
8. Hysteresis effects are negligible, .c:;
9. Salt exclusion processes are negligible. ég;a
10. Constant parameters (e.g., porosity) remain constant with respect ;§;$

to time; i.e., freeze-thaw cycles do not modify parameters. ?éi

11. Freezing and thawing processes in a two-dimensional medium occur ?:;

in such a way that there are no internal shear or stress forces ‘sg;
developed between different zones. oo
The phase change model which couples the heat and soil-water flow models ;Ei;
is based upon the simple control volume approach where freezing/thawing occurs Eig?
isothermally (Guymon and Hromadka, 1977). The algorithm is based on a control
volume generated by the nodal integration method. A volume of freezing soil 353
is retained at 0°C until the latent heat of fusion of all available soil-water 3;3:
for freezing has been evolved. :é;
Figure 4.3 illustrates the phase change model logic, and indicates how i;g;:
the entire nodal point control volume is lumped during phase change, ;}Sg
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FIG. 4.3 ISOTHERMAL SOIL-WATER FREEZING MODEL

OBTAIN Nodal Temperature Value for Time (t+At): T?tdt

no
freezing

no
freezing

Soil-water available for freezing (Si) is estimated from nodal water

content (9? At) and residual water content (eRES) by

_ t+ At :
Si e J(8;" 7" -Opeq) dA

no no
freezing

yes

Heat evolution (AQi) during timestep At is estimated using the

heat capacity C, by AQ; = Cm(0°C - T? At)RJ’CIA
i
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EVALUATE
E = (Si "AQi/La):

E=0

S § freezes

o set T? At . 0%

o set OF A =@,

ouT

E>0

—ﬁ o soil-water volume freezing is AQ./L,

o set T? At _ ooc

e decrease nodal water content value

byAQi/La

E<O

—| esoil-water volume freezing is S,

o set TEFAL =(s;L, - AQ,)
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4.3 MODEL PARAMETER RELATIONSHIPS
Because the soil-water flow model is based on energy head, solution of
(3) requires that the relationship between soil-water pressure head and

soil-water content be defined where the time-derivative term is replaced by
28 _ 20 3 (7)
ot oy ot
The partial derivative, %%- is determined from Gardner's (1958) relationship
of (6). Hydraulic conductivity is defined as a function of VY by
K

W) = —2 (8)
KH Ak|w|m+1

where Ko=saturated hydraulic conductivity, and Ay and m are calibrated
parameters. Hydraulic conductivity in soil-freezing zones is estimated by

the exponential relationship of (5).

Soil-water pore pressures at freezing fronts are defined by

Y(at freezing front) = ¥ (8ggs)

N

A' ‘l .. \

where Oppg is a residual soil-water content,

I./1
v

Additional data required for use with the model are boundary conditions

. P

for the heat and soil-water flow models, and initial conditions of temperature,
water content and ice content. Boundary conditions are modeled as constants
or sinusoidal functions specified by the program user as to amplitude and

wave period. Modeling data input requirements are discussed in detail in

Chapter 5,
54
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L 5 .
‘ 5.0

5.1

PROGRAM PROTO®
INTRODUCTION

A FORTRAN computer program is available which accomodates two-dimen-
sional heat and soil-water flow models (Chapters 2 and 3) as coupled by
an isothermal phase change model (Chapter 4). The program can be used to
analyze two-dimensional freezing/thawing problems which have sufficient
known infermation to supply the necessary modeling parameters, boundary
conditions, and initial conditions.

Because of the sophistication of the two-dimensional phase change
model and the data requirements needed to properly represent inhomogeneity
of the system, boundary conditions, and other complexities, a special data
input program is developed in order to aid the model user. This general
purpose data preparation program, PROTO@, develops the data input file to
be used directly by the two-dimensional phase change program.

In this chapter, the PROTOP program will be reviewed in detail. The
actual CRT screen pages will be displayed which show the data entry prompts
in their respective order of appearance. Also shown on the CRT screen

pages are the computer program variable names associated to each prompt in

order to aid in understanding the FORTRAN code.

MODELING APPROACH

Heat and Soil-Water Flow

Chapters 2 and 3 provide the details of the mathematical models used

to approximate the thermal and soil-water effects in two-dimensional problems,

The analyst initially discretizes the problem geometry (two-dimensional
domain) into a collection of triangle finite elements (Fig. 5.1). The
computer model further subdivides these triangles into nodal domains such

as shown in Fig. 5.2. The collection of nodal domains forms a control volume

for each nodal point (Fig. 5.3). The computer model then balances the
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FIG. 5.1. DISCRETIZING THE DOMAIN  INTO FINITE ELEMENTS 2
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"t::::'
heat and soil-water flow over each nodal control volume using straight-line Visi
OO0
(]
interpolation of temperature and soil-water energy head to compute the zﬁzﬁ
corresponding rates of flow. This straight-line interpolation function is p_~
shown graphically in Fig. 5.4. Ny ¥
Y Yt
- ]
Phase Change ££¢&
Chapter 4 describes the isothermal phase change algorithm used to =

T
approximate the freezing and thawing of soil-water. This algorithm is E;{,
{. -

based upon the '"lumped-mass' control volume shown in Fig. 5.5 (which ﬁﬁg
conforms geometrically to the control volume used to balance heat and soil- E;\;

o

~ 7

. LN o
water flow). Figure 5.6 illustrates the budget used for each nodal control Q&:‘
S

LR
volume which accounts for the residual water content (unavailable for hxh.
freezing), the remaining water content available for freezing, and the ice DN
RS

content. During phase change, the nodal temperature is defined to equal ¢
RO

~ e,

the freezing point depression (usually 0°C). RN
T

LA
5.2 MODELING PARAMETERS !

~a
-.. \ \
The parameters needed for the computer model fall into 3 categories: {i&‘
Y
(i) heat flow parameters ' '

e

(ii) soil-water flow parameters o

".f:'.

(iii) phase change parameters A

N

Heat Flow Parameters .
Thermal conductivities and heat capacities are required to model heat ;f}

‘-.‘..\:
flow. These parameters can be usually developed from published formulas, }Efv
A

or obtained from charts and tables. -

s

- "l\

Soil-Water Flow Parameters e
. '_..""

Sl

The soil-water flow model requires information regarding the coefficient RO

S

AN

and exponent used in the Gardner's function (see chapter 4) relationships {
for hydraulic conductivity and water content as related to pore pressure. ;:;T
i

-
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Phase Change Parameters Jk
The volumetric latent heat of fusion and freezing point depression are u&
defined by the program user, Y
15
Parameter Groups :
Rather than enter the several parameters for each finite element, il
L d
parameter groupings are used to combine similar properties. Two types of :j:j
N
groupings are used; namely, element parameter groups and nodal parameter .;5
ey,
groups. e,
-Element parameter groups include the conduction parameter i
P ]
s s . o
data. This enables a better description of conduction 3
[t
values used to compute flow rates across control volume b\‘
- CatY
boundaries, e
roe
-Nodal parameter groups include the capacitance parameter ;:;
data. This enables the program user to best define those 4
parameters which are averaged over the control volume ﬁyﬁ
AL
q-‘l
area (e.g., heat capacity). ;:}
-
A
Figure 5.7 demonstrates the flow balance models used, and where -~
the conduction and capacitance parameters are assumed to apply. fﬁ:
5.3 MODELING RESULTS e
.'._I'-_
Nodal Values )
e e NN
The computed results provide nodal point values of temperature, volu- }“:
-'.‘(‘
. A . . T
metric water content, and volumetric ice content produced at time intervals NG
i
specified by the program user. A special feature afforded by the program is —
A
Lo . . . . N
the ability to also print the previous timestep computed results (along with -;\$
-\.
VA
the current modeling results) in order to compare the change in nodal values -}i
Yo\
of several variables during the recent timestep advancement. K .
i)
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Freezing Front Interpretation

Because the ice content values are specified at nodal points, and due to
the mass-lumping budget used for the phase change algorithm (see Fig. 5.6),
interpretation of the nodal ice content values are required in order to locate
the freezing front (i.e., the line separating the frozen soil from unfrozen
soil)., Similarly, the temperature values require interpretation in order to
locate the 0°C isotherm (freezing front) at the boundary between the frozen
and unfrozen soil regions., The interpretation effort required is directly
related to the size of the finite elements used, Large triangular elements
necessarily result in large control volume dimensions associated to each
nodal point (see Figs. 5.2 and 5.3).

The usual interpretation procedure is to simply assume that the volume
of ice estimated to exist in a nodal control volume exists as a single piece,
and is located to the side of the control volume which has frozen.

This interpretation can be illustrated in terms of a one-dimensional
problem involving rectangular-shaped finite elements. Figure 5.8a shows
a nodal point control volume which is initiating freezing of available soil-
water. The most recent timestep only evolved enough heat to freeze 10-
percent of the soil-water available for phase change. Due to the lumped-
mass model, the entire nodal control volume is associated with the nodal
point value; hence, the nodal values of temperature and ice content indicate
the freezing point depression and 10-percent frozen soil-water, respectively.
Thus this information must be interpreted to indicate that the 10-percent
frozen available soil-water is in one-piece and located as shown in Fig. 5.8a.
Figure 5.8b illustrates the same control volume with 60-percent of the
available soil-water frozen. Figure 5.8c illustrates a two-dimensional

control volume with 60-percent of the available soil-water frozen.
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FIG. 5.8¢c. 60-PERCENT FROZEN CONTROL VOLUME (TRIANGLE ELEMENTS)
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5.4 THE TWO-DIMENSIONAL, PHASE CHANGE PROGRAM SYSTEM Q*gi
The two-dimensional, coupled heat and soil-water flow, with an isothermal h#:?

phase change approximation computer model is available as the FROST2X series :ﬁ.‘

of programs where currently four versions are available (Table S.1). &j
Similarly, the PROTO@ program has been extended to serve special purpose f‘g

problems where the problem geometry is of a typical character. For example,

]
7y

o+

PROTO1 enables for a quick data file preparation for roadway embankment

;n

‘\
h Y

problems where the interior nodal points and finite elements are developed

o
hJ
A,

by the program based on the entry of a few critical geometric coordinates of

3

Sty
AN
NN

34
Ay

«
co?

o

the problem boundary and locations of regional homogeneity (i.e., identical

v

parameters for heat and soil-water flow).

h Y

It is noted that by considering the data entry requirements used in
PROTO@, the engineer can prepare special purpose data file preparation codes e
which are compatible with the FROST2X series, significantly reducing the PAEN

data entry requirements associated with the PROTO@ general purpose code.

5.5 PROTO@ DATA REQUIREMENTS e

The data entry requirements associated with PROTO@ fall into four broad

categories, These data groupings are illustrated in Fig. 5.9. -




PROGRAM

FROST2A

FROST2B

FROST2C

FROST2D

PROGRAM

FROST2B

FROST2D

TABLE 5.1

PROGRAM FROST2X DESCRIPTIONS

DESCRIPTION

Base Development Version of FROST2X Series.

Two-Dimensional Heat and Soil-Water Flow
Model With Isothermal Phase Change Model.
Accomodates Heterogeneous But Isotropic

Soil Systems. Includes an Apparent Heat
Capacity During Phase Change Compatible

With PROTOP For Data File Preparation.

Extends FROST2B To Include Anisotropic Soil-

Water Flow.

Extends FROST2C To Include Vertical Frost
Heave and Overburden Effects. Compatible
With PROTO1 For Data File Preparation of

Roadway Embankment Problems

TABLE 5.2 SUBROUTINE TABULATION

Main, Indata, Bcsine, Trans, Phase,

Output, Presol, Comb, Finsol.

Main, Indata, Bcsine, Trans, Phase,

Output, Presol, Comb, Finsol, Over,

Note: The PROTOP program presented in this chapter is compatible with
FROST2B.
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@ MODEL CONTROL DATA
nodal domain integration mass lumping factor
timestep
time between global matrix regeneration
time of simulation
time between output of results
model selection:
heat and soil-water flow
heat flow
soil-water flow
include isothermal phase change
thermal parameters of water and ice
number of nodes
number of temperature boundary condition nodes
number of pore pressure boundary condition nodes
number of triangle finite elements

® FINITE ELEMENT PARAMETER GROUPS
thermal conductivity of soil
heat capacity of soil
saturated hydraulic conductivity of soil
exponent in Gardner's hydraulic conductivity
coefficient in Gardner's hydraulic conductivity
hydraulic conductivity ice content correction factor (exponent)

@ NODAL POINT PARAMETER GROUPS
soil porosity
exponent in Gardner's water content
coefficient in Gardner's water content
frozen soil residual water content
heat capacity of control volume

® FINITE ELEMENT NODE NUMBERS AND (x,y) COORDINATE DATA

NODAL POINT INITIAL CONDITIONS
temperature
soil-water pore pressure head
ice content

® TEMPERATURE BOUNDARY CONDITIONS
node number
maximum temperature
minimum temperature
sine period
phase shift

® SOIL-WATER PORE PRESSURE BOUNDARY CONDITIONS
node number
maximum pore pressure head
minimum pore pressure head
sine period
phase shift

FIG. 5.9. PROGRAM FROST2B DATA REQUIREMENTS
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5.6 PROTOP DATA ENTRY o

Program PROTOf prompts the model user for all data entries. In the .

following, the data entry prompts are shown in their order of appearance.
Included with the prompts are the associated PROTOP variable names. It

is noted that several of the prompts include suggested parameter values

(for typical soil-water phase change problems), and the range of values

5

b

allowed for use with program FROST2B.
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PP eIttt 2333032203038 0333223022033 2388033303333 422333233333 83¢838323¢ Rttty
TWO-DIMENSIONAL )

HEAT AND S0IL WATER FLOW MODEL

WITH AND WITHOUT PHASE CHANGE

» Q “
: 1
DEVELOPED AT ?“
UNIVERS1TY OF CALIFORNIA, IRVINE. ||
A
s
a
PRINCIPAL INVESTIGATOR: GARY L. GUYMON ;rfy
- PROGRAM DEVELOPMENT: TED V. HROMADKA P

VERSION DA
$ILIENTER A [1] TO CONTINUES: 2SS

[
s

SR LLLE LRSI 222030 et eete el iliieisliiilietteeetetetttttirrrimm
XPROGRAM PROCESS SELECTIONX
ttt#ttt#*t*ttt*tttlttttt*ttXttltlXlltlll!llt!ttl!tttltlttt*tlltttt!ttlltttt

e
ENTER PROGRAM PROCESS NUMBER: KOPT s
1 = CREATE A NEW DATA BANK -
2 = CONTINUE CREATING A DATA BANK SR
3 = EDIT AN EXISTING DATA BANK NS
4 = EXIT FROGRAM [PROT00AJ NN
> L
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e
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INTRODUCTION! (PROTOOAR)
THIS GENERAL PURPOSE DATA FILE PREPARATION FROGRAM
REQUIRES:
1.NO MORE THAN 90 NODAL POINTS.
2.NO MORE THAN 150 TRIANGULAR FINITE ELEMENTS.
(THREE VERTEX-LQCATED NUDES TO EACH ELEMENT)
3.ALL COORDINATES ARE IN FIRST QUADRANT.
4.ALL NODAL FOINTS ARE NUMBERED SEQUENTIALLY
FROM NUMBEK 1.
S.ALL ELEMENTS ARE NUMBERED SFQUENTIALLY FROM
NUMBER 1.
6.MATRIX BANDWIDTH MUST NOT EXCEED 18
(BANDWIDTH = MAXIMUM ARITHMETIC UDIFFERENCE EBETWEEN
ANY FINITE ELEMENT NODAL NUMBERS, + 1)

ENTER NODAL DOMAIN INTEGRATION(NDI) MASS-~LUMPING FACTOR! XNETA
NOTE :MASS-LUMPING FACTORS FOR NUMERICAL METHODS ARE:

2 = GALERKIN

3 = SUBDOMAIN INTEGRATION

O = INTEGRATED FINITE DIFFERENCE
VALUES ARE BETWEEN C13 AND (1000001)

. [
. e

100
ALLOWABLE

e o~

I RN NN NN
IEREEREEEEEE]

..
oo

ENTER TIMESTEP MAGNITUDE (HOURS): DELT
(CRANK-NICOLSON TIME ADVANCEMENT METHQOD IS USED FOR

MEAT TRANSFORT MODEL» FULLY-IMPLICIT TIME ADVANCEMENT

METHOD IS USED FOR SOIL-MOISTUKE TRANSPORT MODEL)

0004vt0'oot0000:'00:000.-90'0.0'000.-00
@ 0 0 0 0 2 66 0 0 0000 LOEIIEIOEOEESEIEIIEEIOS

..
..
..
.
..
e
oo

T EEEEEEE TN
LI IR IR AR IR SR SRR B S 3

o ——— = A = Y e . e - - - - - - - -

DEFINITION OF °UPLATE® !
IN THIS COMPUTEK MODEL ALL THEKMAL AND SOIL-MOISTURE
PARAMETERS ARE HELD CONSTANT FOR A USER-SFECIFIFD
DURATION OF TIME. THIS DURATION OF TIME IS CALLED THE
THE °*UFDATE FERIOD® AND IS EXFRESSFD 1N UNITS UF HOURS
ENTER UPDATE FERIOD (HOURS):
(SMALLEST ALLOWAKLE VALUE IS (

[ (3 [3
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THE TOTAL COMPUTER MODEL STMULATION TIME IS
EXPRESSED IN UNITS OF DAYS
ENTER LENGTH OF SIMULATION (DAYS):
(SMALLEST ALLOWAEKLE VALUE IS C 0.0041671)

- - - " - " - " = = — . " = - — - " = - ——— - ———

COMPUTER SOLUTIONS ARE PRINTED ACCORDING TO A USEK
: SPECIFIED SIMULATION INTERVAL.THIS OUTPUT TIME
t INTERVAL IS EXPRESSED IN UNITS OF DAYS

ENTER TIME INTERVAL BETWEEN COMPUTER OUTPUTS (DAYS): ouT
(SMALLEST ALLOWAEBLE VALUK IS C 0.0041671)
(LARGEST ALLOWABLE VALUE IS [ 2.00001)

T TS T S S I R S E I E T S T N I T TS IS E I T I S F I S T ST TS T RESSZSEESSERIIS=TTCS=ERX
NDI MASS LUMPING FACTOR = 1000.000 (INPUT EXAMPLE)
TIME STEF MAGNITUDE = 0.100000 HOUKS
UPDATE PERIOD = 0.100000 HOUKS

LENGTH OF SIMULATION = 2.000000 LAYS

TIME INTERVAL BETWEEN COMPUTER OUTFUTIS = 1.000000 DAYS

{IISELECT DATA OFTION NUMBER: S stsotrededossdddsssssyasrsssssrirels
1 = ACCEPT DATA AND CONITINUE
2 = DATA IS UNACCEFTARLE: REINFUT LAST SFQUENCE
3 = ACCEFT DATA AND TERMINATE FPROCESS
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PROGRAM MODEL SELECTIONS
P P s 3333 detidssesdssedssatiseiststedsdsessssssstdstidesssdcedstsss]

T RN EEEET TS S S I EEE S E S S S P E E N EEE E E R I E R E E E E E E E T E r EE T E TR EEE TSI EEEEEEESEEERES
ENTER PROGRAM MODEL OPTION NUMBER: NPATHI
0 = HEAT AND MOISTURE TRANSPORT
1 = HEAT TRANSPORT ONLY
2 = MOISTURE TRANSPORT ONLY

-
IR R T S S S ZEEREESIEESITIRNEITISRR=TITE
I3 » *
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IN THIS MODEL» SOIL WATER PHASE CHANGE IS ASSUMED
TO OCCUR ISOTHERMALLY. SOIL-WATER ANL ICE CONTENTS
ARE ACCOUNTED FOR BY A SIMFLE CONTROL VOLUME
RUDGET KEEPING., A CONTROL VOLUME 15 DEFINED FOR
EACH NODAL POINT BY THE SUMMATION OF EACH

TRIANGLE ELEMENT NODAL DOMAIN ASSOCIATED TO

EACH NOLE.

ENTER FROGRAM SO1L~-MOISTURE FREEZING/THAWING MODEL IPHASE
OPTION NUMEER:

0 = EXCLUDE ISOTMERMAL FREEZING/THAWING MODEL.

1 = INCLUDE ISOTHERMAL FREEZING/THAWING MODEL.
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USER SPECIFIED MODEL SELECTIONS! (INPUT EXAMPLE)

HEAT AND MOISTURE TRANSPORT
INCLUDE FREEZING/THAWING MODEL

$IISELECT DATA OPTION NUMBER::::
1 = ACCEPT DATA AND CONTINUE
2 = DATA IS UNACCEFTABLE? REINPUT LAST SEQUENCE
3 = ACCEPT DATA AND TERMINATE FROCESS

SSPECIFIED THERMAL INFORMATIONX

ISR E T S IR S I E S E T T T E I S R NI I R R I AT ST T ES =SS oSS IZ=====SZ==x

ENTER FREEZING POINT DEPRESSION OF WATER (C DEGREES):
NOTE:

ENTER (0] FOR METRIC SYSTEM
(ALLOWABLE VALUES ARE BETWEEN (-1001 AND (1001)
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VOLUMETRIC HEAT CAPACITY OF WATER:!(cal/cmkx3)
NOTEZ:ENTER [1.,00] FOR METRIC SYSTEM
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ENTER VOLUMETRIC HEAT CAPACITY OF ICE:(cal/cmi%3)

NOTE!ENTER [0.46]1 FOR METRIC SYSTEM
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SYSTEM

ENTER (4.8) FOR METRIC

NOTE

TKI

ENTER THERMAL CONDUCTIVITY OF ICE:(cal/hr.cm.c)

NOTE

ENTER [19.0) FOR METRIC SYSTEM

XL

ENTER [80.) FOR METRIC SYSTEM

ENTER VOLUMETRIC LATENT HEAT OF FUSION:(cal/cm8%3)

NOTE
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ASPECIFIED THERMAL INFORMATIONX (INPUT EXAMPLE)

THE THERMAL FREEZING FOINT DEPRESSION OF WATER = 0.000000

HEAT CAPACITY OF WATER = 1.0000

HEAT CAPACITY OF ICE = 0.4600

THERMAL CONDUCTIVITY OF WATER = 4.8000

THERMAL CONDUCTIVITY OF ICE = 19,0000

LATENT HEAT OF FUSION =  §0.000000

CT DATA OPTION NUMBER: 22222 sdsidrasaresssssssssssssssrys
ACCEPT DATA AND CONTINUE

DATA IS UNACCEPTABLEs REINPUT LAST SEQUENCE

ACCEFT DATA AND TERMINATE PROCESS

g um

NODAL DOMAIN INTEGRATION
MODEL PROBLEM-DEFINITION INFORMATION
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FMTER NUMEER OF NODAL POINTS IN THE MODEL!
4. LOWABLE VALUES 4RE BETWEEN C[4] AND C90D)
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ENTER NUMBER OF NODAL POINTS WITH SPECIFIED TEMPERATURE
BOUNDARY CONDITIONS?

UL UAT YL T U

(ALLOWABLE VALUES ARE BETWEEN L[1J AND [ 421)

R R R N N R R N T R I L R R R R  E  E E NN
ENTER NUMBER OF NODAL POINTS W1TH SFECIFIED
SOIL~WATER PORE PRESSURE HEAD BOUNDARY CONDITIOUNS:

(ALLOWAERLE VALUES ARE BETWEEN [11 AND [ 42))

I N R NN R R R N N R R R N N R R R N R R R R N R R R R
ENTER NUMEBER UF TRIANGLE FTINITE ELEMENTS IN THE MODEL: NEL
(ALLOWABLE VALUES ARE BETWEEN C2) AND C1501)

-+ -+ -t 2t F F - 2 2 3+ 2 T s E E X 3 3 E 2 E E F 3 - E X R E X i I rIiI i i EEE i
NUMBER OF FINITE ELEMENTS IN THE MOLOEL = 40 (INPUT EXAMPLE)
NUMBER OF NODAL POINTS IN THE MODEL = 42
NUMBER OF NODES WITH SPECIFTED TEMPERATURE = 4
NUMBER OF NODES WITH SPECIFIED PORE PRESSURE HEAD = 2
$SISELECT DATA OFTION NUMBER ;.o coostsotssssstssssessstssssssssssesesy

1 = ACCEFT DATA AND CONTINUE
2 = DATA IS5 UNACCEFTABLE; REINPUT LAST SEQUENCE
3 = ACCEPT DATA AND TERMINATE PROCESS
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ENTER EXPONENT 0OF PORE PRESSURE HEAD IN GARDNERS
HYDRAULIC CONDUCTIUITY FUNCTION:
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ENTER MULTIPLIER OF PORE FRESSURE HEAD IN GARDNERS
HYDRAULIC CONDUCTIVITY FUNCTION?
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ENTER HYDRAULIC CONDUCTIVITY EXPONENT ADJUSTMENT PARELE(J,8)
FACTOR *E*:
NOTE:

L ADJUSTMENT FACTOR = 10.%XX(-E % ICE CONTENT)
»

=======================$=================$=============--=============’..'.
ELEMENT-PARAMETER GROUPING & 1 (INPUT EXAMPLE)
THERMAL CONDUCTIVITY OF SOIL = 14,0000

VOLUMETRIC HEAT CAFACITY OF SOIL = 0.5000

SATURATED HYDRAULIC CONDUCTIVITY OF SOIL = 0.1000

EXPONENT OF PORE PRESSURE HEAD IN GARDNERS CONDUCTIVITY FUNCTION = 1.2000

HYDRAULIC CONDUCTIVITY EXPONENT ADJUSTMENT FACTOR = 1.000

e o = - T T —— = = = = = = ——— - — A —— —— —— -

$IISELECT DATA OPTION NUMBER:$SSP2olstssssadsisostisossrrsssasosesese
1 = ACCEFT DATA AND CONTINUE
2 = DATA IS UNACCEPTABLE# REINPUT LAST SEQUENCE
3 = ACCEPT DATA ANLU TERMINATE PROCESS

MULTIPLIER OF PORE PRESSURE HEAD IN GARDNERS CONDUCTIVITY FUNCTION = 0.4000
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PARNOD(J,1)
PARNOD(J,2)

INFORMATION IS

IDENTIFIED BY A NODAL-PARAMETER GROUPING NUMEER.
#0 1 JIINFORMATION!
81

*ELEMENT PARAMETER GROUPINGS® sFURTHER

FARAMETER INFORMATION 1S DEFINED FOR NODAL POINTS.

SIMILAR TO THE
*NODAL FOINT PARAMETER GROUPING®

LLOWABLE VALUES ARE BETWEEN (1] AND [101])

ENTER NODAL-PARAMETER GROUPING

THESE SETS OF PARAMETERS ARE USED TO MORE PRECISELY
DEFINE ASSUMED CONSTANT PARAMETERS ON A CONTROL
VOLUME RASIS FOR EACH NODAL POINT RATHER THAN
SIMFLY AVERAGING FINITE ELEMENT FARAMETERS

FOR EACH NODAL CONTROL VOLUME.
NTER THE NUMBER OF NODAL-PARAMETER GROUPINGS:

THIS

A
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ENTER THE SATURATED VOLUMETRIC MOISTURE CONTENT OF SOIL:
(ALLOWAELE VALUES ARE BETWEEN CO0J AND (1] cmix3/cm¥x3)
ENTER MULTIPLIER OF PORE PRESSURE HEAD 1N GARDNERS

UP TO [10) NODAL-PARAMETER GROUPINGS MAY BE DEFINED.

VOLUMETRIC MOISTURE CONTENT FUNCTION:
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ENTER EXPONENT OF PORE PRESSURE HEAD IN GARDNERS
VOLUMETRIC MOISTURE CONTENT FUNCTION:
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IN THIS MODELs 1T IS ASSUMED THAT NOT ALL OF THE

SOIL WATER IS AVAILABLE FOR PHASE CHANGE. THIS

UNAVAILAEKLE SOIL WATER 1S CALLED A VOLUMETRIC

UNFROZEN WATER CONTENT FACTOR.

ENTER THE ASSUMED VOLUMETRIC UNFROZEN WATER CONTENT PARNOD(J,4)
FACTOR OF THE SOIL:

(ALLOWABLE VALUES ARE BETWEEN (0]

e PO IO OEIPIIIOEBLTOEI SO
PRI SR AR SR AR AR IR AR S AR SR AR 3N BR AR R4

o
..
IS
..
..
..

ENTER THE VOLUMETRIC HEAT CAPACITY OF THE SOIL(cals/cmxx3)>: PARNOD(J,S5)

e i e e P T Y L T YT

NODAL-PARAMETER GROUPING & 1 (INPUT EXAMPLE)
SATURATED VOLUMETRIC MOISTURE CONTENT OF SOIL = 0.4000

MULTIPLER OF PORE PRESSURE IN GARDNERS MOISTUKE CUNTENT FUNCTION = 00,0040
EXFONENT OF PORE PRESSURE IN GARDNERS MO1STUKE CONTENT FUNCTION = 1.2000
VOLUMETRIC UNFROZEN WATER CONTENT FACTOR = 0.1500

VOLUMETRIC HEAT CAFACITY QOF THE SOIL = 0.5000

$UISELECT DATA OPTION NUMBER:$$Sosdsssssssssessssssseesesssse:
1 = ACCEPT DATA AND CONTINUE
2 = DATA IS UNACCEPTABLE: REINPUT LAST SEQUENCE
3 = ACCEPT DATA AND TERMINATE PROCESS
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P33 3333333333223 8253333032032 t332233 032232323230 00 20203020332 38221444
ANODAL COORDINATE INFORMATIONX
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ENTER NOIE NUMBER [ 1) INFORMATION: k?,‘

ENTER X-COOURDINATE OF THE NODE

ODE:?
NOTE: X-COORDINATE MUST BRE IN FIRST
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ENTER Y-CUORDINATE OF THE NO
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ENTER NODAL-PARAMETER GROUP NUMBER: DATNOD(J,3)
(ALLOWABLE VALUES WRE BETWEEN [1J AN L 1)
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NODE NUMBER i (INPUT EXAMPLE) )
X-COORLINATE =  0.000 ~F
Y-COORDINATE = 40,000 BTy
NODAL -FARAMETER GROUP NUMBER = 1,000

LECT DATA OFTION NUMBER: s trlotsssessssatedasssestsssstssassss
ACCEFT DLATA AND CONTINUE
DATA IS5 UNACCEFTABRLE; REINPUT LAST SEQUENCE

ACCEFT DATA AND TERMINATE FROCESS
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T332 i3 3 3833282202300t 2 it ddtttistitteseeiessssstsstsesesssedsy ::.
APROGRAM PROCESS SELECTIONX nw
(PROGRAM CPROTOOBI]) b

1333338333338 033 3302823203230 3 3322230033282 03233 e20233 2003332232833 832232931
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ENTER PROGRAM PROCESS NUMBEK: KOPT o
1 = CREATE A NEW DATA EANK (CONTINUATION OF FROTOOA) ey
2 = CONTINUE CREATING A DATA BANK (CONTINUATION OF PROTOOB) Il
3 = EDIT AN EXISTING DATA BANK
4 = EXIT FROGRAM [PROTO0BI
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THE FROBLEM DOMAIN IS ASSUMED DISCRETIZED INTO ¥
TRIANGLE-SHAPED FINITE ELEMENTS. SINCE THIS .
DATA FREPARATION PROGRAM IS FOR AN AREITRARY !
DOMAINs THE USER MUST ENTER ALL GEOMETRIC ~
INFORMATION INCLUDING THE PROBLEM MESH, "
EACH FINITE ELEMENT HAS 3 NODAL POINTS »THESE N
VERTEX NODAL POINTS MUST BE LISTED IN COUNTER O
CLOCKWISE ORDER. b
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» INITTAL PORE PRESSURE HEAD,

AND INITIAL VULUMETRIC ICE CONTENT OF EALCH NODE AS

REQUESTED?
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ENTER INITIAL TEMPERATURE
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{INPUT EXAMPLE)
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ACCEFT DATA AND CONTINUE
= DATA IS UNACCEPTABLE
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ENTER INITIAL PORE PRESSURE HEAD AT NODE

ENTER INITIAL TEMPERATURE AT
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INITIAL TEMPERATURE OF THE NODE
INITIAL PRESSUKE HEAD OF THE NOLE
INITIAL VOLUMETRIC ICE CONTENT OF
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L2222ttt 2Rt PRttt et P e i s 03 3248333333383 3308338333333 38223¢4 !
A
.
)
Y
NOTE!ALL SFECIFIED BOUNDARY CONDITION (TEMPERATURE AND . *M
PORE-PRESSURE HEAD) ARE EXPRESSED IN TERMS OF A Y .’
SINUSOIDAL VARIATION. :
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e
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000.IQOOCUC'0".'0"00..0.000000(l0"1'00.00.000'.0'0'0'.00.0 ".5
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T
ENTER NODE NUMBER WITH SPECIFIED THERMAL BOUNDARY CONDITION 5&’
( AND SFECIFY THE TEMPERATURE FUNCTION): .*:l
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ENTER MAXIMUM TEMPERATURE ON THE SINE CURVE DESCRIBING ';f:
THE BOUNDARY CUNLITION AT NODE ¢ 1 :: '

ENTER MINIMUM TEMPERATURE (IN THE SINE CURVE DESCRIBING

THE BOUNDARY CONDITION AT NODE ¢ 1

o
ENTER THE PERIOD(HOURS) OF THE SINE CURVE DESCRIBING BCT(J,3) LN
THE TEMPERATURE BOUNDARY CONDITION AT NODE : 1 ' e
S R R R R R R R R R R R R R N SR R S R R N R N R R N N N N S AR RS R R R RN S ¥ ol
i

RN

ENTER THE PHASE SHIFT(HOURS) OF THE SINE CURVE. BCT(J,4) -
DESCRIBING THE TEMPERATURE BOUNDARY CONDITION AT NODE : 1 RN
THREE POSSIBLE VALUES CAN BE USED TO DESCRIBED THE :?i"
SHIFTING SINE CURVE ! e
1.ENTERING A *0° VALUE:! THIS IS A STANDAKD SINE CURVE. ;\jxi
2.ENTERING A °*POSITIVE' VALUE! THIS SINE CURVE IS BEING SHIFTED BACKWARD: RS
BY THAT ENTERED VALUE» FROM THE STANDARD SINE CURVE, "
3.ENTERING A *NEGATIVE® VALUE! THIS SINE CURVE 1S BEING SHIFTED FORWARD:s g
BY THAT ENTERED VALUE, FROM THE STANDARD SINE CURVE. PR
RSAS
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NBCP(J)
BCP(J,1)
BCP(J,2)

(INPUT EXAMPLE)
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REINPUT LAST SEQUENCE

3 = ACCEPT DATA AND TERMINATE PROCESS
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TEMPERATURE ON THE SINE CURVE = -5.0000

L.

= DATA IS UNACCEPTABLE}
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1 = ACCEPT DATA AND CONTINUE

.
.
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KOUNDARY CONDITION (AND DEFINE THE PORE-PRESSURE HEAD

ENTER NODE NUMBER WITH SPECIFIED SOIL-MOISTURE
FUNCTION AT THAT NODAL FOLINT)?

KN4
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ENTER MINIMUM PORE PRESSURE HEAD ON THE SINE CURVE

ENTER MAXIMUM PORE PRESSURE HEAD ON THE SINE CURVE
DESCRIBING THE BOUNDARY CONDITION AT NODE
3

MAXIMUM TEMPERATURE ON THE SINE CURVE = -5,0000
DESCRIBING THE BOUNDARY CONDITION AT NOLE

NODE NUMBER WITH SPECIFIED TEMPERATURE =
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THE PHASE SHIFT OF THE SINE CURVE =
$IISELECT DATA OFTION NUMBER:::
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NTER THE PERIOD(HOURS) OF THE SINE CURVE DESCRIBING
E PORE PRESSURE HEAD BOUNDARY CONDITION AT NODE LI B

e X
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e

ENTER THE PHASE SHIFT(HOURS) OF THE SINE CURVE

DESCRIBING THE PORE PRESSUKE HEAD BOUNDARY CONDITION AT NODE : 41

THREE POSSIELE VALUES CAN BE USED TO DESCRIBED THE BCP(J,4)

SHIFTING SINE CURVE :

1.ENTERING A °"0° VALUE: THIS IS A STANDARD SINE CURVE.

2.ENTERING A *POSITIVE® VALUE: THIS SINE CURVE IS BEING SHIFTED BACKWARD,
BY THAT ENTERED VALUEs FROM THE STANDARD SINE CURVE.

3.ENTERING A °*NEGATIVE® VALUE: THIS SINE CURVE IS KEING SHIFTED FORWARDs
BY THAT ENTERED VALUEs FROM THE STANDARD SINE CURVE.

et e —_——————— - —— = — ——  ——— AR - = = " - - — - v e - ———— -

= 41 (INPUT EXAMPLE)

MAXIMUM PORE PRESSURE HEAD ON THFE SINE CURVE =-10.0000
MINIMUM PORE FRESSURE HEAD ON “HF SINE CURVE =-10.0000
THE PERIOD OF THE SINE CURVE = 48.0000

THE PHASE SHIFT OF THE SINE CURVE = 0.0000

¢SELECT DATA OPTION NUMBER:::Ii:sitedssssissssssssss
1 = ACCEFT DATA AND CONTINUE
2 = DATA IS UNACCEFPTABLE: REINPUT LAST SEQUENCE
3 = ACCEPT DATA AND TERMINATE PROCESS
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ENTER THE MODEL RESULTS OQUTPUT OPTION NUMBER: KOLD
0 = PRINT PREUPDATE TEMPERATURE AND PREUPDATE

PORE PRESSURE HEAD -

1 = DO NOT PRINY PREUPDATE TEMPERATURE AND PREUPDATE 2

PORE PRESSURE HEAD WITH THE OUTPUT. e

LIPS
a

END OF FROST2E.DATA FILE s
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5.7 APPLICATIONS
Three example problems are presented which illustrate the data file
development by use of PROTOf, and the performance of the program FROST2B.

Heat Flow Application

A one-dimensional domain of unit length is discretized by 8 triangle
finite elements as shown in Fig. 5.10a. At time t=0, the temperature is
given by T(x)=1. Boundary conditions are given at x=0 and x=1 by
T(x=0)=T(x=1)=0. Using a normalized timestep of t=0.01, the computed
results from FROST2B and the exact solution (Myers, 1971) are shown in
Fig. 5.10b. The data file prepared by PROTO# is shown in Fig. 5.11.

Soil-Water Flow Application

A vertical homogeneous soil column is discretized by triangle finite
elements as shown in Fig. 5.12a. A water table forms the base of a steady
state 45-degree pore-pressure head profile through the vertical column.

The column is insulated on both sides. The top of the column is suddenly
flooded at a uniform depth of 2 cm. of water. The FROST2B modeling results
are shown in Fig. 5.12b. The data file developed from PROTOP is shown in
Fig. 5.13.

Phase Change Model Application

The vertical column of Fig, 5.12a is now considered with respect to
soil- water freezing. Initially, the column is at a uniform temperature of FE}
+0.1°C. The top of the column is suddenly set at a constant temperature of
-5°C. The FROST2B modeling results are shown in Fig. 5.14, The data file

developed by PROTOP is shown in Fig. 5.15. b
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1000.,000
0.01000
1 0 1
0.00000
4 0
10 8
0.40000001
0.00000000

0.00000000
1.00000000
0,00000000

0.00000000
0.00000
0.00000
0.25000

+ 25000
0.50000
0.50000
0.,75000
0.75000
1.00000
1.00000
0.00000
0.00000

C OCOUNDNANUD G-
e
OCOCrHrOOOROGOOMNR

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.00000

FIG. 8.11.

i 100
1.00000

i 1
0.00400000
0.00000000

0,00000000
1.00000000
0.00000000

0.00000000
0.25000
0.00000
0,25000
0.00000
0.25000
0,00000
0.25000
0.00000
0.25000
0.00000
0.00000
0.,00000

[y
CONVNONUWDH W
O i b bbb ok b pek peb ek

0 0
-10.,00000
-10,00000
-10.00000
~10.00000
-i0.00000
~i0.00000
-10,00000
-10,00000
-10.00000
-10,00000

9.00000

10
1.00000

1.2000000%5
0.,00000000

000000000
0,10000000
0.00000000

0.00000000
1.0

-

C QO =t ik b b bk bk b b
COCTCOTOSODOCO

0.00000
0.00000
0,00000
(.00000
0.00000
0.00000
0.00G00
0.00000
(++00000
0.00000
0.00000

1.00000

0415000001
0+00000000

0.00000000
1,2000000%
0,00000000

0,00000000

1.00000

1.00000000
0.00000000

0. 00000000
0440000001
0.00000000

0.00000000

1.00000

1.00000000
0.,00000000

0.,00000000

PROTO® DATA FILE FOR HEAT FLOW PROBLEM (lof 2)
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C OCOUVUN -

0.00000

0.0000
0.,0000
0.0000
0.0000
0.0000

0.,0000

0.00000
0.0000
0.0000
0.0000
0.0000
0.0000

0.,0000

--------------

0.00000
48,0000 0.00000
48,0000 0.00000
48.0000 0.,00000
48.0000 0.00000
0.0000 0.00000
0.0000 0.00000

FIG. 8.11. (20f 2)

..............
-----------
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1000.,000
0.10000
2 0 1
0.00000
0 é
24 28
0.41600001
0.00000000
0.00000000
5.00000000
0.00000000
0.00000000
0.00000
$.00000
10.00000
0.,00000
5.00000
10.00000
0.00000
5.00000
10.00000
0.00000
5.00000
10.00000
0.00000
5.,00000
10.00000
0.00000
5.00000
10.00000
0.00000
5.00000
10.00000
0.00000
5.00000
10.00000
0.00000
0.00000

[
ROOB®OUNWMOM U

b [
O 0 = VO MW B LN

[N
[ 8 ]

FIG. 8.13.

PROTO®

1 480
1,00000

i 1
0.00000607
0.,00000000
0.00000000
0,20000000
0.00000000
0.00000000
0.00000
0.00000
0.00000
5.,00000
5.00000
$.00000
10.00000
10.,00000
10.00000
15.00000
15.00000
15.00000
20.00000
20.00000
20.00000
25.00000
25.00000
25.00000
30.00000
30.00000
30.00000
35.00000
35.00000
35.00000
0.00000
0.0000

-0 & XM= >

—
et e e e b e et ek e s

—t
&= 0N

60
0.46000

1.73600000
0.00000000
0.00000000
0.06250000
0.00000000
0.00000000
1.0

e I R
CTSOCOOOO

fu—y
.

1.0
1.0
id0
1.0
1.0
i.0
1.0
1.0
i.0
1.0
i¢0
1.0
1.0
1.0
1.0
0.0
0.0

4,80000

0.15000001
0.00000000
0.00000000
2.67400000
0.00000000
0.,00000000

i9.00000

0,20000000
0.00000000
0.00000000
0.00000105
0.00000000
0.00000000

80.00000

12.00000000
0.00000000
0.00000000

DATA FILE FOR SOIL-WATER FLOW PROBLEM
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p P 4
N

Y, 4

»
A

7

2,
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n

8 8
JJ.<qf.



14 13 16 1
14 11 12 1
12 15 14 1
13 14 17 1
17 16 13 1
17 14 15 1
15 18 17 1
16 17 20 1
20 19 16 1
20 17 18 1
18 21 20 1
19 20 23 1
23 22 19 1
23 20 21 1
21 24 23 1
0 0 o 0
0 0 0 0
1.00000 0.00000 0.00000
1.00000 0.00000 0.00000
1.00000 0,00000 0,00000
1.00000 -5.00000 0.00000
1.00000 -5.00000 0.00000
1.00000 -5.00000 0.00000
1.00000 -10.00000 0.00000
1.00000 -10,00000 0.00000
1.00000 -10.00000 0.00000
1.00000 -15.00000 0.00000
1.00000 -15.00000 0.00000
1.,00000 -15.00000 0.00000
1.00000 -20.00000 0.00000
1.00000  -20.00000 0.00000
1.00000 -20.00000 0.00000
1.00000 -25,00000 0+00000
1.00000 -25.00000 0.00000
1.00000 -25.00000 0.00000
1.00000  -30.00000 0.00000
1.00000 -30.00000 0.00000
1.00000  -30.00000 0.00000
1.00000  -35,00000 0.00000
1.00000 -35.00000 0.00000
1.00000  -3%,00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0 0.0000 0.0000 0.0000 0.00000
0 0.0000 0.0000 0.0000 0.00000
1 0.0000 0.0000 48.0000 0.00000
2 0.0000 0.0000 48,0000 0.00000 9
3 0.0000 0.0000 48.0000 0.00000 7
22 2.0000 2.0000 48.0000 0.00000 N
23 2.0000 2.0000 48.0000 0.00000 %t
24 2.0000 2.0000 48,0000 0.00000 %
0 0.0000 0.0000 0.0000 0.00000 At
FIG. 5.13,
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1000.000
0.10000
o 1 1
0.00000
6 3
24 28
0.41600001
0.00000000
0,00000000
5.,00000000
0.00000000
0,00000000
0.00000
5.00000
10.00000
0.00000
5.00000
10.00000
0,00000
5.00000
10.00000
0.00000
5.00000
10.00000
0.00000
5.00000
10,00000
0.00000
5.00000
10.00000
0.00000
5.,00000
10.00000
0,00000
5.00000
10.,00000
0.00000
0.00000

-
NOOoCBOoU UL

—
NN~ NGO -

[y

10

[y
—

FIG. 5.IS.

i 100
1.00000

| 1
0.00000607
0.00000000
0.00000000
0.20000000
0.,00000000
0,00000000
0.,00000
0.00000
0.00000
5.00000
5.00000
5.00000
10.00000
10.00000
10.,00000
15.00000
15.00000
15.00000
20,00000
20.00000
20.,00000
25.00000
25.,00000
25.00000
30.,00000
30.00000
30.00000
35.00000
35.00000
35.00000
0.00000
0,00000
1

Ll -
D= ON~=~ OO DOAOW-D
Pk b b b ek pek ok ek b pmb b ek

PROTO® DATA FILE FOR PHASE CHANGE PROBLEM (lof 3)

10

0.46000

i+73600000
0.00000000
0,00000000
0.06250000
0.00000000
0.00000000
1.0

C C vt b bk ik ik b b ek b puk bk ek pd fed (b ek e b et ek bl ek b
COOCOCOOOCTCOOCOO0OOO0OOOOCOOOO

4,80000

0,15000001
(.00000000
0+.00000000
2.67400000
0.00000000
0.,00000000

19,00000

0.,20000000
0.00000000
0.,00000000
0.,00000105
0,00000000
0,00000000

80.00000

12.00000000
0.00000000
0.00000000
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Fet,
oy
14 13 16 1 oy
14 11 12 1 i
12 15 14 1 il
13 14 17 1 o
17 16 13 1 )
17 14 15 1 1
15 18 17 1 ¥
16 17 20 1
20 19 16 1 o
20 17 18 1 s
18 21 20 1 8
19 20 23 1 F A
23 22 19 1 wh
23 20 21 1 I
21 24 23 1 fkﬁ
0 0 0 0 e '..
0 0 0 0 s
0.10000 0.00000 0.00000 el
0.10000 0.00000 0.00000 v
0.10000 0.,00000 0.00000 *¢9
0.10000 -5.00000 0.00000 Lot
0.10000 -5,00000 0.00000 o
0.10000 -5.00000 0.00000 ity
0.10000 -10.00000 0.00000 -
0.10000 -10.00000 0.00000 mg
0.10000  -10.00000 0.00000 P
0.10000 -15.00000 0.00000 .$ﬁ
0.10000 -15.00000 0.00000 e
0.10000 -15.00000 0.00000 St
0.10000 =-20.,00000 0.00000 :
0.10000 -20,00000 0.00000 A
0.10000  -20.00000 0.00000 by
0.10000 -25.00000 0.00000 ",
0.10000 -25,00000 0.00000
0.10000 -25,00000 0.00000 h'k
0.10000 -30.00000 0.,00000 3
0.10000 -30.00000 0.00000 ]
0.10000 -30.00000 0.00000 !
0.10000  -35,00000 0.00000 hoe
0.10000 -35.00000 0.00000 L
0.10000 -35,00000 0.00000 ot
0.00000 0.00000 0.00000 ‘
0.00000 0.00000 0.00000 Ny
1 0.1000 0.1000 48,0000 0.00000 o
2 0.1000 0.1000 48,0000 0.00000 G
3 0.1000 0.1000 48,0000 0.00000 e
22 -5.0000 -5.0000 48,0000 0.00000 )
23 -5.0000 ~5.0000 48.0000 0.00000 —
24 -5.0000 -5,0000 48,0000 0.00000 A
0 0.0000 0.0000 0.0000 0.00000 RN
0 0.0000 0.0000 0.0000 0.00000 e
1 0.0000 0.0000 48,0000 0.00000 A
2 0.0000 0.0000 48,0000 0.00000 VY
3 0.0000 0.0000 48.0000 0.,00000
0 0.0000 0.0000 0.0000 0.00000
FIG.5.15. (2 of 3)
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A.0 INTRODUCTION

t
ot
(i

1
A

In chapter 3 is presented the development of a nodal domain integration

“a g e

(NDI) model of three-dimensional heat conduction based on a tetrahedron finite

‘"

Py

element. From this numerical model, the finite difference, subdomain integra-

tion and Galerkin finite element methods, and an infinity of finite element

-

mass-lumped matrix models are unified into a single numerical statement.
As an extension, the NDI technique is now applied to the

radial-coordinate, finite element. It is shown that the Galerkin finite

X, PR RN

5 85 v
'Y

element, subdomain integration, and an integrated finite-difference numerical

o

1
N models are obtained by the appropriate specification of a single parameter in E
p the resulting NDI statement. . Thus, all three numerical approaches are unified .
o KR
2 into one numerical statement similar in form to a Galerkin finite element o
: matrix system. The extension of the NDI technique to developing unified cylin- ;2
. drical and spherical coordinate models follows from the derived radial coordinate ;-
i model and the NDI three-dimensional tetrahedron finite element model of E;
N chapter 3. ¢
~y LS
\ The purpose of this section is thrce-fold., The first objective is to present "
<
f a basic description of the NDI technique as applied to the class of partial
; differential equations generally encountered in the theory of diffusion and
= heat conduction. Sufficient set definitions and integral manipulations are ]
. provided in order that the extensions of the results to cylindrical and spherical ;
" coordinate systems are direct. The theoretical foundations of this numerical %J
) technique are based on the subdomain version of the finite element weighted 5
P
'E residuals approach, and incorporate the mass-lumping techniques used in some
:: finite element approaches. The development closely follows the presentation of :
, e
. Chapters 2 and 3. y
o2 »
) -,
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The second objective is to develop the NDI numerical statement which ',.:Eéi
represents the finite element Galerkin statement, subdomain integration ‘1c£
numerical statement, and integrated finite-difference control volume statement, 7l
by the specification of a single parameter in the resulting radial element Egg
matrix system. ;"::"
A third objective is to use the unified NDI formulation to gain insight ;{A

as to the performance of the several well-known domain models in the approxi- 53:3
mation of radially symmetric heat conduction processes. Since the NDI model g&f
represents each of the most popular numerical models as point values of the ok
NDI approximation statement, the same computer code can be used for each é}ﬁ
numerical analog, as well as an arbitrary finite element mass-lumping scheme. 2
A.1 NDI MODEL DEVELOPMENT N
The partial differential equation describing radially symmetric heat Eési
conduction in an isotropic homogeneous medium is given by ?Jt
33
3 [’ 30 36 N
vy LRK a—R:l = RS = (1) E«E

PV

r'.'if‘ .

where K is the thermal conductivity; S is the heat capacity; R is the radial

\

ST,
AL

s
Aty
L4

coordinate; ¢ is temperature; and t is time.

LNy

The finite element technique apnroximately solves the governing equation - ;;

on a finite element discretization of the domain (Zienkiewicz, 1977). The i;i;
integrated finite-difference method uses a control volume discretization Eézi
(Spalding, 1972). h’:\
The nodal domain integration approach partitions a finite element into jiji;
smaller "nodal domains" which are geometrically defined as the intersection gz;i
of the finite elements and control volumes. The utility of this further #i\;‘
partitioning of the finite element is that an integrated finite-difference or Ej&f
]
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a subdomain integration analog can be conveniently written in terms of a matrix
system similar to the Galerkin finite element matrix system. Additionally,
flux type boundary conditions can be accommodated on the problem domain

boundary without the need of special equations or finite-difference approximations.

The following set definitions of subdomains (control-volumes), finite elements,
and nodal domains will be used to develop the NDI finite element matrix system.

Consider the partial differential operator relationship
A(¢) = f; (x,y)eq, Q=QUr (2)

defined on global domain 2 with boundary condition types of Dirichlet or
Neumann specified on global boundary I'. A n-nodal point distribution can
be defined in Q with arbitrary density such that an approximation ¢ for ¢
is defined in Q by

R n

¢ = J_ZINJ-(x.yMJ; (x,y) e (3)
where Nj(x.y) are linearly independent global shape functions and °J are

assumed values of the state variable, ¢, at nodal point j. In (3) it is

assumed that except for a set of Lebesque measure zero

lim ¢ = 1im ¢ = ¢, (x,y)eQ (4)
N-o max H (Xj,)‘j) ’ (xk-yk)H"O

A closed connected spatial subset Rj is defined for each nodal point j such

that

Q= {J Rj (5)
j=1
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.

The sets RJ are generally called control-volumes or subdomains, and usually

are accompanied with additional requirements that

(xjt .Yj) CRJB (xjo .YJ) ‘Rko J#k (6)

and

Ry = RJU BJ (7)

where (xJ. yj) are the spatial coordinates of node j and Bj ts the boundary
of Rj. It is assumed that every subdomain {s disjoint except along shared

boundaries, i.e.
RyNR = Bjﬂsk (8)

The subdomain method of the finite element weighted residuals approach

approximates (2) by solving the n equations

[ (A(o) - f) Vj dA = 0, j=1,2,°*+,n (9)
Q

where

1, (x,y) eRj
"'j = (10)
0, (xo.Y) ¢RJ

A second cover of 2 is defined by the finite element method with

Yy

l’c
18 77

ry

q=Jge® (11)

Ve e
" P

where ¢% is the closure of finite element domain 0 and its boundary ré,

LA
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Let S, be the set of subscripts defined by

N um‘ﬂnj # (o]} (12)

that is, Se is simply the set of nodes associated to qt.
Then a set of nodal domains Qg is defined for each finite element domain 0°
by (Fig. AY)

nj-n’ﬂaj.use (13)

The subdomain method of weighted residuals as expressed by (9) can be
rewritten in terms of the subdomain cover of Q by

[ (Als) - ) wy dA = | (Alo) - f) dA (14)

& i

With respect to the finite element discretization of Q,

(A(e) - f) dA = | (A(e) -f) dA (15)
; R.r\Qe
J J e
where for each finite element 0% a matrix system is given by generatina Z;ti
'J:::‘
for each nodal point jeS, 1$:f
(A(3) - f) dA = | (Alo) - f) dA, jec, (16) SN
J o
e e ¢,
R. .
oM ; oy :}"

P
P4

From the above subset definitions and set covers of N, application of the

)

s

usual subdomain method to the governing partial differential operation of

Y Ju ]
"\'.ﬁ

(2) is accomplished by an integration of the governing equations over the

e ]

nodal domains interior of each finite element, resulting in a finite element

matrix system similar to that determined by the Galerkin finite element method.
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A.2 NDI INTEGRATION

In this section, the governing heat flow equation is integrated over the
several nodal domains associated to a finite element Q% This approach is
simply the subdomain integration weighted residual method as applied to a sub-
domain or control volume, except that the approximation error is averaged
over the nodal domains interior of the subdomain. These nodal domain contri-
butions can then be reassembled into matrix form for each element f. Using
the previous set notation, the operator relationship for the radially-symmetric

heat conduction model of (1) is

3 3¢ ad
A(o)-fs—[RK—-} - RS — (17)
aR 3R ot

whereby substituting (17) into (16) gives an element matrix system for q°

3 3 30
— | RK— | - RS — | dA }=(0},j€S, (18)
3R 3R at

{
ot
j

Expanding (18),

) 30
RK — | | ds | + RK — | | ds
an an
~8 e e e e e e
mJﬂr r§ r§ rjﬂr r$
36
RS — dA .jESe (19)
at

o
Ca. P —————

where the first term of (19) cancels due to flux contributions from con-
tiguous finite elements or satisfies Neumann boundary conditions on global

boundary I'; and where (n,s) are normal and tangential vector components on

e e
8j| rJl and r .

AT
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In order to evaluate the integration expressions of (19), definitions
of the finite element and subdomain covers of global domain Q are necessary.
| The finite element cover 0f of Q 1s assumed defined by the

at = ((x,y)|0=r sRgr}

a? = ((x,y)|r, s R < r)}

. (20)
s ((xy)|rg s Rer =L}

where ry is the radial coordinate of node 1; and
R s {((x,y)|0 € R <L}

The subdomain cover RJ of 0 1s assumed defined by

R,z ((x,y)]0 =2r <2R¢ (r ¢r)}
R, = tlxuy)l(r +r)) c2R < (r +r))
. (21) -
Ry = (hxay)ilry ¢ rp) s 2R 2 2L} 23,
Therefore, the nodal domain cover .’2‘? of finite element 0% is defined B
by '.j-"f
R R 5
2 = a Ue,, (22) e
N7
-
where (Fig. A.1) Q;R
. ey
Qg : ((x.y)lre <R < (r‘e . rvl)/Z; ':\.
(23) _
e . T
Ngol © {(x.y)l(r'e + rm)/z SR<re) s
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Integration of the governing flow equation on each Qj involves the
definition and integration of the thermal conductivity, K. An approach to
handling the nonlinearity problem is to approximately linearize the governing
flow equation by assuming the various parameters to be constant for small
timesteps, At. For K set to a quasi-constant value K® in 0% during timestep at,

(19) may be rewritten for the nodal domain Q§ contribution to subdomain R‘1

e 39 l 3
RK® — ‘ds = RS —dA }, jeS, (28) o,
an at o
e e e e e s
EXTRL % )
A
!Iﬂ

Since the governing heat flow equation is radially symmetric, (24) simplifies

". -
to (see Fig. A.2) R
3R

LAY
Zjﬁ':f

e 30 3 N
RK® — = RS — dR Jes L

3R st ' e (25) A

Srenrt’ et G

J J J ,-.‘:r"

a-:.':'

fals

This integrated relationship will be used to develop a subdomain integration

mode! in the following section. e
A.3 NUMERICAL SOLUTIONS W
In the derivation of the finite element integration statement of (25) i:‘;.j'.-

.‘.:.'_

for 2%, no specification of the character of the state variable is assumed. S
'-\h

In the following, the state variable ¢ is assumed to be adequately approximated 2
by linear trial function ¢% in each finite element 0%. Therefore it is assumed ~
that ¢ = ¢° = IL; 03 in each 0% where the Lj are the usual linear local -f-:.i::‘
..;-\-.

coordinates in Q'-, and o? are nodal point values of the temperature trial '\",
function estimate in 0. Due to the linear definition of #% in a®, all scatial .’,:f:::'
_’,:::::C

X

'y %
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gradients of ¢ are constant. Consequently, several well known domain
numerical solutions of (1) in Q embodied in the finite element method of
weighted residuals result in similar numerical approximations of (1) in each
a®. To develop these domain numerical solutions, the following description

variable is defined:

3 3 3
d=— | RK— | - RS — (26)
R 3R at

Although the Galerkin method of weighted residuals used to solve (1) in

each o is well known, its derivation of a finite element matrix system is
presented in order to develop some of the notation and simplifications used
in the subsequent determinations of the subdomain inteqgration and integrated
finite difference analogs, and to demonstrate the use of flux-type boundary

conditions on global boundary .

Galerkin Method of Weighted Residuals

In Qe,

IQLj dR = 0 (27)

Qe

generates a Galerkin finite element matrix system for approximation of (1)
on Qe.

Integrating by parts reduces (27) to

[ 30 3¢ dL 30

Ly dR = RK—1L, |- RK——-1+SR—LJ dR (28)
J 3R R dR It
ot ré¢ of

The first term in the expansion of (28) satisfies flux continuity between

finite elements and Neumann boundary conditions on global boundary T in a

manner similar to the NDI statement of (19).
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For (¢,K) = (ge. K‘) in o during a small timestep At where @e is an assumed
linear trial function for ¢ in ne. (28) simplifies to the Galerkin finite

element statement

e
3¢ dL 3
05K°——JR—1dR+S—JRoeLJdR (29)
3R dR at
ot a®
where
e
3¢
- &
K —o T gy = 0g)/(rgyy - 1) (30)

Integrating (29) determines the Galerkin finite element matrix system for

the approximation of (1) on

s® 0% + PE(2)8% + 0%(2)4° = (0} (31)
where
e K® 1 -1
§ = -2—16 re + re+1 1 1] (32)
s® r2 1

Pe(2) = & [ :{ (33)
- 6 1 2
. s(:2) 1 1
Q- (2) = [ J (34)
- 12 13

and where ¢° : (rt”1 - re); and (@e. ée) are vectors of the nodal values and

time derivative vf nodal values of finite element e.
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Subdomain Integration
A cover of finite element a® is given by the union of nodal domains

Q;. JeSe. The subdomain integration version of the weighted residuals process

approximates (1) in each subdomain RJ by

f o WydR = 0 (35)
Ry
where
1 » RERJ
W = (36)
0 , otherwise
But v
f oW R = f ¢ dR + J ¢ dR (37) RS
J i 3 AN

Thus a finite element matrix system is generated by the subdomain integration

e
A ‘.,.‘.

method for finite element by

hY

(LY

J AR} = {0}y jes, (38) .
‘

"N
L4 ‘.-’"‘

v
v

e
2

From (25),

3¢ 1)
!odk = (RK—]I -J RS — dR .je:Se (39)

e e e” e e
. =T
3 FJ l"J r Qj
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Using (K.e) = (K%, %)

2¢° 3

[odn z [x‘-‘—] R -s—[ao‘aa .JeSe (40)
aR it

e e_.e . e e

af r§ rjﬂr'J o

Integrating (40) gives the finite element statement of a subdomain integration

approximation of (1) on finite element a®

s o% + P® (3) 4% + 0%(3)4° = (0} (41)

Cs

where §° is given by the Galerkin element matrix of (32), and *-.f;

e Sele 3 1 ‘.:.‘

Pe(3) = — (42) :

- 8 |1 3 o

A

Ak

D)

. s(2%)2 2 1 e

°(3) = (43) A

24 2 7 R

\.E\

N

and where vectors (¢%,$%) are as defined previously. :i:;
T e

From (40), the global finite element matrix system determined by the

A

“x

appropriate summation of each q° matrix system satisfies Dirichlet and Neumann

l"’

R
‘, A 4 A Y Tty

boundary conditions in a manner similar to the global Galerkin matrix system.

PR
2

Additionally, the capability of representing an inhomogeneous medium by

specifying different parameters in each finite element @% is similar to the ;Zf:'-_Z:
N

usual Galerkin finite element approach, although from (40) the conduction é\.
parameters are necessarily evaluated at the midpoint of the finite element -«
NN

and capacitance parameters need to represent a mean value in the control ::':;‘::
NS

volume associated to the particular nodal point. These advantages normally ‘;}ﬁ
A
associated to the Galerkin finite element approach can also be developed for ‘_"
N

an integrated finite-difference numerical analog for the approximation of (1) S
on 8. NN
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Integrated Finite Difference
The integrated finite-difference approach (Spalding, 1972) can be extended

to the solution of (1) on appropriately defined control volumes. The usual
control volume definition, however, is identical to the subdomain definition
cover RJ of global domain Q given by (21). Thus, an integrated finite-

di fference approximation for solution of (1) on a® where the trial function oe

is assumed to be linear in each q° is given by
e
3¢

K — | R
aR

But the integrated finite-difference approach equates

2
= s—[ R 4% dR v Jes, (44)

at

e_eM e e
r§ rjﬂr o

J ¢® dR = 0 [ dR (85)
e e
sy 1

Thus, the finite element matrix system is given by

11}

—_
<
—t

$° 0% + %) 3 4 () 4° (46)

where §e is once more given by (32); and

se® M1 0
P (=) = 2~ [ } (47)

2 0 1

e s(ef)” 10
0%(=) = L (48)
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From (40), the global finite element matrix system determined by the
appropriate summation of each a® matrix system of (46) satisfies Neumann and

Dirichlet boundary conditions in a manner generally associated with the Galerkin

A approach. Additionally, anisotropic inhomogeneous mediums are similarly

- accommodated as with a Galerkin or a subdomain integration analog previously
A derived.

Due to the similarity of the three numerical approximations, a single

element matrix system for the approximation of (1) on a® can be written by

e a0

¢ 0% + P%(n) 4% + Q%(n) 4% = (0} (49) 3
o :
> e . . . -
. where S™ is given by (32); and -~
) _,-\.
X . Se2® [n 1 -
. P°(n) 2 ——— (50) "y
. N 2(n+1) [ 1 n N
< y
a e 5(2°)* (n? -2n+3) 3
\ 0 (n) = — (51) N
" - 4(2n%-n+3) | (3n-3) (3n?-3n+3) ~
) 3
. The Galerkin finite element, subdomain integration, and integrated finite- A
LS
N difference numerical analogs of (31), (41), and (46) are given by (49) for
.
‘ n=(2,3,2) respectively.

Extension of the NDI technique to cylindrical coordinates follows
directly from (32), (50) and (51). The extension to spherical coordinates

follows from the tetrahedron finite element determination (Hromadka and Guymon,
‘ 1983b) and the above results.
’
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A.4 NDI MODEL ANALYSIS
The previous section unified several numerical techniques into a

single finite element matrix system as a function of the degree of mass
lumping, n. The question remains whether an optimum n factor exists such that
the modeling integrated relative error is a minimum.

In this work, the n factor developed for one-dimensional diffusion
problems (Hromadka and Guymon, 1983b) is used to test the NDI model accuracy
for radial problems where analytical solutions exist. This technique is based
on the Fourier series expansion of a particular solution to the one-dimensional
diffusion equation in a small homoaeneous control volume. That is, the radial

geometric contributions are neglected in the development of n.

For a control volume RJ. the usual process of normalization reduces the

one-dimensional diffusion equation to

3le 236
—_— 22—, xe[0,1] (52)
ax? at

where 8 is a normalized variable for ¢, and variables x,t are now defined as

normalized space and time. [t is assumed in (52) that 6(x =0) = 8510

8(x =.5) = ej' and 6(x =1) = ej+1 where ek are normalized nodal values.

Using the Crank-Nicolson midtimestep advancement procedure to approxi-
mate the time derivative, the nodal equation for solution of ej is

At . . . . .
i+l i+l i+l i i i -
2118 [[ej-l ZeJ + ejﬂ] + (ej_l - ZGJ. + 8j+1]]

(53)

oy Lot ) ong 7 )« et - )]




*,

where the normalized length, HRJll -21- ; 1 is the timestep number; and ny is ‘,"2::

5

constant during normalized timestep At. Equation (53) evaluates all modeled 3’-"
flux terms at the midtimestep. For other time derivative approximations such on
as forward or backward step differencing, a similar difference statement can E:-r
aln

be developed. A solution of (52) using (53) at the midtimestep is .~::
- 1 (7 2 Loz -ne o
8(x,e) = - 3 [91-1 - ZeJ + ej+l] sin wxe :..:._-’?

>

(54) )

z 2 a o

* {em * °J-1] X+ 85 i

where € is normalized time measured from the midtimestep; and where 2;-_:‘.:
1 A
B = 21- [e} + e}’l]. If it is assumed that a)) effects of a moving boundary value -:;2:
at the endpoints is equivalent to holding 6 constant at the midtimestep boundary P
values, then (54) represents an exact solution to the assumed boundary value -',
problem. ,s."
Holding the boundary values of 6 constant at the midtimestep allows a N
simplification of the NDI nodal equation to ‘E:
N
At C IR . RS

r(é + 8 ] - [e‘ PRGN R 1 [Zr (o”l - ei]-I (55) o

TERTRS i R R BN PTRTR UL I R
Solving for e} and e;ﬂ gives ‘..'::..:’!
i_°(1 -at) . 1z .58 . nat/2 R

(56a) RO
1 (= - ::’Q‘?.

t2 (ej-l ' 9j+1] -

itl o (1 at), 1 (s 2 -n24t/2 l[‘ + 3 ]

Sy =8 [?' T] -3 [91-1 28 "j+1J° *7 (%5-1 " Ber)  (560) 3
N
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Combining (56a,b) and (55) gives ny s function of the mode! timestep size

by
-n?
aat (1+e°7 8%

At) = -7 2 57)
nJ( ) 1-e ™8 -4At(1*l-"TAt) (

where the normalized timestep At is relatad to the global mode! timestep At

by
at*
At = (58)
4| R, |?
where D is the mean diffusivity (D = K/S) for RJ.
From (57), the mass lumping factor lies within the range
8/(n? -8) ¢ ny(at) <= (59)

and is seen to be a function of timestep and element size.

To test the success of the n(at) selection technique, several radially
symmetric heat transfer (diffusion) problems where analytic solutions are known
were modéléd. Additionally, the derived n factors of 2,3, and = were also
tested for comparison purposes. The measure of accuracy used is a form of the

L, norm of the error given by

/2
E-[f(o-&)zm}l/[dn (60)
Q Q

where ¢ is the test problem solution; ; is the approximation value; and E is

the error of approximation.
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In this study, six different boundary value problems of the heat flow ":':,;
equation were tested with various values of the timestep (Crank-Nicolson éi‘
method) and finite element size. For each test, nodal values are reset to the a
exact nodal values after each timestep advancement in order to better test the :?:
approximation error in satisfying the flow equation rather than measuring the ‘:".‘.
accumulation of approximation error. After each timestep, the £ error is
evaluated and stored for the four considered n factor approaches, and the factor E};
which resulted in the minimum E value (2 success) is noted. Consequently, more -E'
than 150 test problems (5 timesteps and 5 element spacings for each boundary E«
value problem) resulted in an excess of 20,000 timestep advancements. By ::E
dividing the number of successes by the total number of timestep advancements, ;.2
a probability of success for a n factor is estimated. Fiqure J shows the success .,.:J_
probability for the n(At) approach as a function of normalized timestep size and ?’,\\E
element size. N

A.5 CONCLUSIONS

1. A unifying numerical model can be developed for radially symmetric heat
conduction problems. The unifying model is based on the straight forward <
nodal domain integration method. The resulting model is found to have :j:é

the capability of representing the Galerkin finite element, subdomain :‘}is".;

integration, and integrated finite difference methods by the specification ::

of a single mass matrix lumping factor, n. ,\

2. The global matrix system composed of the sum of all NDI elements accom-
modates Dirichlet, Neumann, and mixed boundary conditions without the need _r

for special finite differencing equations. \2\,

3. An infinity of possible domain numerical methods are possible, and can be :E-.

represented by the NDI mode) for specific values of n. s .
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4. A computer code based on the Galerkin finite element method can easily be
modified to allow a variable mass lumped matrix system and, consequently,
represent an integrated finite difference, subdomain integration, and an
infinity of other domain methods.

w,
L]
2,
L]
l’
.

5. An improved mass lumping factor exists (as a function of timestep and

LT

finite element size) which minimizes approximation error more often than
any of the other considered domain methods. The probability of the pro-
posed optimum mass lumping system being the best numerical method 1s
approximately 70 percent for the normalized timestep sizes considered.
The improved method is developed based on a linear trial function mode!

and a Crank Nicolson time advancement approximation. Although only the

radially symmetric problem is developed the extension of the approach to

cylindrical and spherical coordinate problems is straightforward.
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